Data Preparation for Fairness-Performance Trade-Offs: A Practitioner-Friendly Alternative?

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:arXiv.org (Dec 20, 2024), p. n/a
Tác giả chính: Voria, Gianmario
Tác giả khác: Rebecca Di Matteo, Giordano, Giammaria, Catolino, Gemma, Palomba, Fabio
Được phát hành:
Cornell University Library, arXiv.org
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full text outside of ProQuest
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Bài tóm tắt:As machine learning (ML) systems are increasingly adopted across industries, addressing fairness and bias has become essential. While many solutions focus on ethical challenges in ML, recent studies highlight that data itself is a major source of bias. Pre-processing techniques, which mitigate bias before training, are effective but may impact model performance and pose integration difficulties. In contrast, fairness-aware Data Preparation practices are both familiar to practitioners and easier to implement, providing a more accessible approach to reducing bias. Objective. This registered report proposes an empirical evaluation of how optimally selected fairness-aware practices, applied in early ML lifecycle stages, can enhance both fairness and performance, potentially outperforming standard pre-processing bias mitigation methods. Method. To this end, we will introduce FATE, an optimization technique for selecting 'Data Preparation' pipelines that optimize fairness and performance. Using FATE, we will analyze the fairness-performance trade-off, comparing pipelines selected by FATE with results by pre-processing bias mitigation techniques.
số ISSN:2331-8422
Nguồn:Engineering Database