Multi Agent Reinforcement Learning for Sequential Satellite Assignment Problems

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Dec 20, 2024), p. n/a
Autor principal: Holder, Joshua
Outros Autores: Jaques, Natasha, Mesbahi, Mehran
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3148684109
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148684109 
045 0 |b d20241220 
100 1 |a Holder, Joshua 
245 1 |a Multi Agent Reinforcement Learning for Sequential Satellite Assignment Problems 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Assignment problems are a classic combinatorial optimization problem in which a group of agents must be assigned to a group of tasks such that maximum utility is achieved while satisfying assignment constraints. Given the utility of each agent completing each task, polynomial-time algorithms exist to solve a single assignment problem in its simplest form. However, in many modern-day applications such as satellite constellations, power grids, and mobile robot scheduling, assignment problems unfold over time, with the utility for a given assignment depending heavily on the state of the system. We apply multi-agent reinforcement learning to this problem, learning the value of assignments by bootstrapping from a known polynomial-time greedy solver and then learning from further experience. We then choose assignments using a distributed optimal assignment mechanism rather than by selecting them directly. We demonstrate that this algorithm is theoretically justified and avoids pitfalls experienced by other RL algorithms in this setting. Finally, we show that our algorithm significantly outperforms other methods in the literature, even while scaling to realistic scenarios with hundreds of agents and tasks. 
653 |a Task scheduling 
653 |a Multiagent systems 
653 |a Algorithms 
653 |a Satellite constellations 
653 |a Machine learning 
653 |a Combinatorial analysis 
653 |a Polynomials 
653 |a Optimization 
653 |a Greedy algorithms 
700 1 |a Jaques, Natasha 
700 1 |a Mesbahi, Mehran 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148684109/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15573