AI-generated Image Quality Assessment in Visual Communication

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Dec 20, 2024), p. n/a
Hovedforfatter: Tian, Yu
Andre forfattere: Li, Yixuan, Chen, Baoliang, Zhu, Hanwei, Wang, Shiqi, Kwong, Sam
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3148684128
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148684128 
045 0 |b d20241220 
100 1 |a Tian, Yu 
245 1 |a AI-generated Image Quality Assessment in Visual Communication 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Assessing the quality of artificial intelligence-generated images (AIGIs) plays a crucial role in their application in real-world scenarios. However, traditional image quality assessment (IQA) algorithms primarily focus on low-level visual perception, while existing IQA works on AIGIs overemphasize the generated content itself, neglecting its effectiveness in real-world applications. To bridge this gap, we propose AIGI-VC, a quality assessment database for AI-Generated Images in Visual Communication, which studies the communicability of AIGIs in the advertising field from the perspectives of information clarity and emotional interaction. The dataset consists of 2,500 images spanning 14 advertisement topics and 8 emotion types. It provides coarse-grained human preference annotations and fine-grained preference descriptions, benchmarking the abilities of IQA methods in preference prediction, interpretation, and reasoning. We conduct an empirical study of existing representative IQA methods and large multi-modal models on the AIGI-VC dataset, uncovering their strengths and weaknesses. 
653 |a Visual fields 
653 |a Quality assessment 
653 |a Datasets 
653 |a Annotations 
653 |a Image quality 
653 |a Visual perception 
653 |a Artificial intelligence 
653 |a Visual perception driven algorithms 
700 1 |a Li, Yixuan 
700 1 |a Chen, Baoliang 
700 1 |a Zhu, Hanwei 
700 1 |a Wang, Shiqi 
700 1 |a Kwong, Sam 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148684128/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.15677