Adaptive User Interface Generation Through Reinforcement Learning: A Data-Driven Approach to Personalization and Optimization

Enregistré dans:
Détails bibliographiques
Publié dans:arXiv.org (Dec 22, 2024), p. n/a
Auteur principal: Sun, Qi
Autres auteurs: Xue, Yayun, Song, Zhijun
Publié:
Cornell University Library, arXiv.org
Sujets:
Accès en ligne:Citation/Abstract
Full text outside of ProQuest
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3148947043
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148947043 
045 0 |b d20241222 
100 1 |a Sun, Qi 
245 1 |a Adaptive User Interface Generation Through Reinforcement Learning: A Data-Driven Approach to Personalization and Optimization 
260 |b Cornell University Library, arXiv.org  |c Dec 22, 2024 
513 |a Working Paper 
520 3 |a This study introduces an adaptive user interface generation technology, emphasizing the role of Human-Computer Interaction (HCI) in optimizing user experience. By focusing on enhancing the interaction between users and intelligent systems, this approach aims to automatically adjust interface layouts and configurations based on user feedback, streamlining the design process. Traditional interface design involves significant manual effort and struggles to meet the evolving personalized needs of users. Our proposed system integrates adaptive interface generation with reinforcement learning and intelligent feedback mechanisms to dynamically adjust the user interface, better accommodating individual usage patterns. In the experiment, the OpenAI CLIP Interactions dataset was utilized to verify the adaptability of the proposed method, using click-through rate (CTR) and user retention rate (RR) as evaluation metrics. The findings highlight the system's ability to deliver flexible and personalized interface solutions, providing a novel and effective approach for user interaction design and ultimately enhancing HCI through continuous learning and adaptation. 
653 |a User interface 
653 |a User experience 
653 |a Adaptive systems 
653 |a Configuration management 
653 |a Human-computer interface 
653 |a Design optimization 
653 |a Human-computer interaction 
653 |a Feedback 
653 |a Customization 
700 1 |a Xue, Yayun 
700 1 |a Song, Zhijun 
773 0 |t arXiv.org  |g (Dec 22, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148947043/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16837