Optimizing Queries with Many-to-Many Joins

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Dec 20, 2024), p. n/a
1. Verfasser: Kalumin, Hasara
Weitere Verfasser: Deshpande, Amol
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3148947893
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148947893 
045 0 |b d20241220 
100 1 |a Kalumin, Hasara 
245 1 |a Optimizing Queries with Many-to-Many Joins 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a As database query processing techniques are being used to handle diverse workloads, a key emerging challenge is how to efficiently handle multi-way join queries containing multiple many-to-many joins. While uncommon in traditional enterprise settings that have been the focus of much of the query optimization work to date, such queries are seen frequently in other contexts such as graph workloads. This has led to much work on developing join algorithms for handling cyclic queries, on compressed (factorized) representations for more efficient storage of intermediate results, and on use of semi-joins or predicate transfer to avoid generating large redundant intermediate results. In this paper, we address a core query optimization problem in this context. Specifically, we introduce an improved cost model that more accurately captures the cost of a query plan in such scenarios, and we present several optimization algorithms for query optimization that incorporate these new cost functions. We present an extensive experimental evaluation, that compares the factorized representation approach with a full semi-join reduction approach as well as to an approach that uses bitvectors to eliminate tuples early through sideways information passing. We also present new analyses of robustness of these techniques to the choice of the join order, potentially eliminating the need for more complex query optimization and selectivity estimation techniques. 
653 |a Workload 
653 |a Algorithms 
653 |a Queries 
653 |a Cost function 
653 |a Workloads 
653 |a Query processing 
653 |a Optimization 
653 |a Representations 
700 1 |a Deshpande, Amol 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148947893/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16323