PixelsDB: Serverless and NL-Aided Data Analytics with Flexible Service Levels and Prices

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Dec 23, 2024), p. n/a
Yazar: Bian, Haoqiong
Diğer Yazarlar: Geng, Dongyang, Li, Haoyang, Chai, Yunpeng, Ailamaki, Anastasia
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3148948993
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148948993 
045 0 |b d20241223 
100 1 |a Bian, Haoqiong 
245 1 |a PixelsDB: Serverless and NL-Aided Data Analytics with Flexible Service Levels and Prices 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a Serverless query processing has become increasingly popular due to its advantages, including automated resource management, high elasticity, and pay-as-you-go pricing. For users who are not system experts, serverless query processing greatly reduces the cost of owning a data analytic system. However, it is still a significant challenge for non-expert users to transform their complex and evolving data analytic needs into proper SQL queries and select a serverless query service that delivers satisfactory performance and price for each type of query. This paper presents PixelsDB, an open-source data analytic system that allows users who lack system or SQL expertise to explore data efficiently. It allows users to generate and debug SQL queries using a natural language interface powered by fine-tuned language models. The queries are then executed by a serverless query engine that offers varying prices for different performance service levels (SLAs). The performance SLAs are natively supported by dedicated architecture design and heterogeneous resource scheduling that can apply cost-efficient resources to process non-urgent queries. We demonstrate that the combination of a serverless paradigm, a natural-language-aided interface, and flexible SLAs and prices will substantially improve the usability of cloud data analytic systems. 
653 |a Resource scheduling 
653 |a Data analysis 
653 |a Prices 
653 |a Resource management 
653 |a Queries 
653 |a User satisfaction 
653 |a Query processing 
653 |a Query languages 
700 1 |a Geng, Dongyang 
700 1 |a Li, Haoyang 
700 1 |a Chai, Yunpeng 
700 1 |a Ailamaki, Anastasia 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148948993/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.19784