URoadNet: Dual Sparse Attentive U-Net for Multiscale Road Network Extraction

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Dec 23, 2024), p. n/a
Hovedforfatter: Song, Jie
Andre forfattere: Sun, Yue, Cai, Ziyun, Liang, Xiao, Huang, Yawen, Zheng, Yefeng
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3148950899
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148950899 
045 0 |b d20241223 
100 1 |a Song, Jie 
245 1 |a URoadNet: Dual Sparse Attentive U-Net for Multiscale Road Network Extraction 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a The challenges of road network segmentation demand an algorithm capable of adapting to the sparse and irregular shapes, as well as the diverse context, which often leads traditional encoding-decoding methods and simple Transformer embeddings to failure. We introduce a computationally efficient and powerful framework for elegant road-aware segmentation. Our method, called URoadNet, effectively encodes fine-grained local road connectivity and holistic global topological semantics while decoding multiscale road network information. URoadNet offers a novel alternative to the U-Net architecture by integrating connectivity attention, which can exploit intra-road interactions across multi-level sampling features with reduced computational complexity. This local interaction serves as valuable prior information for learning global interactions between road networks and the background through another integrality attention mechanism. The two forms of sparse attention are arranged alternatively and complementarily, and trained jointly, resulting in performance improvements without significant increases in computational complexity. Extensive experiments on various datasets with different resolutions, including Massachusetts, DeepGlobe, SpaceNet, and Large-Scale remote sensing images, demonstrate that URoadNet outperforms state-of-the-art techniques. Our approach represents a significant advancement in the field of road network extraction, providing a computationally feasible solution that achieves high-quality segmentation results. 
653 |a Attention 
653 |a Algorithms 
653 |a Semantics 
653 |a Encoding-Decoding 
653 |a Complexity 
653 |a Remote sensing 
653 |a Roads & highways 
700 1 |a Sun, Yue 
700 1 |a Cai, Ziyun 
700 1 |a Liang, Xiao 
700 1 |a Huang, Yawen 
700 1 |a Zheng, Yefeng 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148950899/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.17573