Kernel Methods for the Approximation of the Eigenfunctions of the Koopman Operator

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Dec 21, 2024), p. n/a
المؤلف الرئيسي: Lee, Jonghyeon
مؤلفون آخرون: Hamzi, Boumediene, Hou, Boya, Owhadi, Houman, Santin, Gabriele, Vaidya, Umesh
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3148958911
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148958911 
045 0 |b d20241221 
100 1 |a Lee, Jonghyeon 
245 1 |a Kernel Methods for the Approximation of the Eigenfunctions of the Koopman Operator 
260 |b Cornell University Library, arXiv.org  |c Dec 21, 2024 
513 |a Working Paper 
520 3 |a The Koopman operator provides a linear framework to study nonlinear dynamical systems. Its spectra offer valuable insights into system dynamics, but the operator can exhibit both discrete and continuous spectra, complicating direct computations. In this paper, we introduce a kernel-based method to construct the principal eigenfunctions of the Koopman operator without explicitly computing the operator itself. These principal eigenfunctions are associated with the equilibrium dynamics, and their eigenvalues match those of the linearization of the nonlinear system at the equilibrium point. We exploit the structure of the principal eigenfunctions by decomposing them into linear and nonlinear components. The linear part corresponds to the left eigenvector of the system's linearization at the equilibrium, while the nonlinear part is obtained by solving a partial differential equation (PDE) using kernel methods. Our approach avoids common issues such as spectral pollution and spurious eigenvalues, which can arise in previous methods. We demonstrate the effectiveness of our algorithm through numerical examples. 
653 |a Eigenvalues 
653 |a Linearization 
653 |a Partial differential equations 
653 |a Continuous spectra 
653 |a Operators (mathematics) 
653 |a Equilibrium 
653 |a System dynamics 
653 |a Algorithms 
653 |a Nonlinear systems 
653 |a Dynamical systems 
653 |a Nonlinear dynamics 
653 |a Eigenvectors 
700 1 |a Hamzi, Boumediene 
700 1 |a Hou, Boya 
700 1 |a Owhadi, Houman 
700 1 |a Santin, Gabriele 
700 1 |a Vaidya, Umesh 
773 0 |t arXiv.org  |g (Dec 21, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148958911/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16588