LLM4AD: A Platform for Algorithm Design with Large Language Model
Сохранить в:
| Опубликовано в:: | arXiv.org (Dec 23, 2024), p. n/a |
|---|---|
| Главный автор: | |
| Другие авторы: | , , , , , , , |
| Опубликовано: |
Cornell University Library, arXiv.org
|
| Предметы: | |
| Online-ссылка: | Citation/Abstract Full text outside of ProQuest |
| Метки: |
Нет меток, Требуется 1-ая метка записи!
|
| Краткий обзор: | We introduce LLM4AD, a unified Python platform for algorithm design (AD) with large language models (LLMs). LLM4AD is a generic framework with modularized blocks for search methods, algorithm design tasks, and LLM interface. The platform integrates numerous key methods and supports a wide range of algorithm design tasks across various domains including optimization, machine learning, and scientific discovery. We have also designed a unified evaluation sandbox to ensure a secure and robust assessment of algorithms. Additionally, we have compiled a comprehensive suite of support resources, including tutorials, examples, a user manual, online resources, and a dedicated graphical user interface (GUI) to enhance the usage of LLM4AD. We believe this platform will serve as a valuable tool for fostering future development in the merging research direction of LLM-assisted algorithm design. |
|---|---|
| ISSN: | 2331-8422 |
| Источник: | Engineering Database |