Rethinking Performance Analysis for Configurable Software Systems: A Case Study from a Fitness Landscape Perspective

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 22, 2024), p. n/a
Autor principal: Huang, Mingyu
Altres autors: Mao, Peili, Li, Ke
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3148977523
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148977523 
045 0 |b d20241222 
100 1 |a Huang, Mingyu 
245 1 |a Rethinking Performance Analysis for Configurable Software Systems: A Case Study from a Fitness Landscape Perspective 
260 |b Cornell University Library, arXiv.org  |c Dec 22, 2024 
513 |a Working Paper 
520 3 |a Modern software systems are often highly configurable to tailor varied requirements from diverse stakeholders. Understanding the mapping between configurations and the desired performance attributes plays a fundamental role in advancing the controllability and tuning of the underlying system, yet has long been a dark hole of knowledge due to its black-box nature. While there have been previous efforts in performance analysis for these systems, they analyze the configurations as isolated data points without considering their inherent spatial relationships. This renders them incapable of interrogating many important aspects of the configuration space like local optima. In this work, we advocate a novel perspective to rethink performance analysis -- modeling the configuration space as a structured ``landscape''. To support this proposition, we designed \our, an open-source, graph data mining empowered fitness landscape analysis (FLA) framework. By applying this framework to \(86\)M benchmarked configurations from \(32\) running workloads of \(3\) real-world systems, we arrived at \(6\) main findings, which together constitute a holistic picture of the landscape topography, with thorough discussions about their implications on both configuration tuning and performance modeling. 
653 |a Data analysis 
653 |a Software 
653 |a Data mining 
653 |a Tuning 
653 |a Configuration management 
653 |a Spatial data 
653 |a Configurable programs 
653 |a Modelling 
653 |a Data points 
700 1 |a Mao, Peili 
700 1 |a Li, Ke 
773 0 |t arXiv.org  |g (Dec 22, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148977523/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16888