AgroXAI: Explainable AI-Driven Crop Recommendation System for Agriculture 4.0

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 16, 2024), p. n/a
Hlavní autor: Turgut, Ozlem
Další autoři: Kok, Ibrahim, Ozdemir, Suat
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3148979179
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148979179 
045 0 |b d20241216 
100 1 |a Turgut, Ozlem 
245 1 |a AgroXAI: Explainable AI-Driven Crop Recommendation System for Agriculture 4.0 
260 |b Cornell University Library, arXiv.org  |c Dec 16, 2024 
513 |a Working Paper 
520 3 |a Today, crop diversification in agriculture is a critical issue to meet the increasing demand for food and improve food safety and quality. This issue is considered to be the most important challenge for the next generation of agriculture due to the diminishing natural resources, the limited arable land, and unpredictable climatic conditions caused by climate change. In this paper, we employ emerging technologies such as the Internet of Things (IoT), machine learning (ML), and explainable artificial intelligence (XAI) to improve operational efficiency and productivity in the agricultural sector. Specifically, we propose an edge computing-based explainable crop recommendation system, AgroXAI, which suggests suitable crops for a region based on weather and soil conditions. In this system, we provide local and global explanations of ML model decisions with methods such as ELI5, LIME, SHAP, which we integrate into ML models. More importantly, we provide regional alternative crop recommendations with the counterfactual explainability method. In this way, we envision that our proposed AgroXAI system will be a platform that provides regional crop diversity in the next generation agriculture. 
653 |a Soil lime 
653 |a Arable land 
653 |a Recommender systems 
653 |a Internet of Things 
653 |a Agriculture 
653 |a Artificial intelligence 
653 |a Machine learning 
653 |a Explainable artificial intelligence 
653 |a Natural resources 
653 |a Edge computing 
653 |a Soil conditions 
700 1 |a Kok, Ibrahim 
700 1 |a Ozdemir, Suat 
773 0 |t arXiv.org  |g (Dec 16, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148979179/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16196