Iterative Encoding-Decoding VAEs Anomaly Detection in NOAA's DART Time Series: A Machine Learning Approach for Enhancing Data Integrity for NASA's GRACE-FO Verification and Validation

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 20, 2024), p. n/a
Autor principal: Lee, Kevin
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3148979673
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148979673 
045 0 |b d20241220 
100 1 |a Lee, Kevin 
245 1 |a Iterative Encoding-Decoding VAEs Anomaly Detection in NOAA's DART Time Series: A Machine Learning Approach for Enhancing Data Integrity for NASA's GRACE-FO Verification and Validation 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) data are critical for NASA-JPL's tsunami detection, real-time operations, and oceanographic research. However, these time-series data often contain spikes, steps, and drifts that degrade data quality and obscure essential oceanographic features. To address these anomalies, the work introduces an Iterative Encoding-Decoding Variational Autoencoders (Iterative Encoding-Decoding VAEs) model to improve the quality of DART time series. Unlike traditional filtering and thresholding methods that risk distorting inherent signal characteristics, Iterative Encoding-Decoding VAEs progressively remove anomalies while preserving the data's latent structure. A hybrid thresholding approach further retains genuine oceanographic features near boundaries. Applied to complex DART datasets, this approach yields reconstructions that better maintain key oceanic properties compared to classical statistical techniques, offering improved robustness against spike removal and subtle step changes. The resulting high-quality data supports critical verification and validation efforts for the GRACE-FO mission at NASA-JPL, where accurate surface measurements are essential to modeling Earth's gravitational field and global water dynamics. Ultimately, this data processing method enhances tsunami detection and underpins future climate modeling with improved interpretability and reliability. 
610 4 |a National Aeronautics & Space Administration--NASA National Oceanic & Atmospheric Administration--NOAA 
653 |a Data processing 
653 |a Verification 
653 |a Real time operation 
653 |a Signal quality 
653 |a Climate models 
653 |a Tsunamis 
653 |a Gravitational fields 
653 |a GRACE (experiment) 
653 |a Earth gravitation 
653 |a Encoding-Decoding 
653 |a Anomalies 
653 |a Machine learning 
653 |a Time series 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148979673/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16375