Resilient Cloud cluster with DevSecOps security model, automates a data analysis, vulnerability search and risk calculation

Sparad:
Bibliografiska uppgifter
I publikationen:arXiv.org (Dec 15, 2024), p. n/a
Huvudupphov: Abed Saif Ahmed Alghawli
Övriga upphov: Radivilova, Tamara
Utgiven:
Cornell University Library, arXiv.org
Ämnen:
Länkar:Citation/Abstract
Full text outside of ProQuest
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3148979696
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.aej.2024.07.036  |2 doi 
035 |a 3148979696 
045 0 |b d20241215 
100 1 |a Abed Saif Ahmed Alghawli 
245 1 |a Resilient Cloud cluster with DevSecOps security model, automates a data analysis, vulnerability search and risk calculation 
260 |b Cornell University Library, arXiv.org  |c Dec 15, 2024 
513 |a Working Paper 
520 3 |a Automated, secure software development is an important task of digitalization, which is solved with the DevSecOps approach. An important part of the DevSecOps approach is continuous risk assessment, which is necessary to identify and evaluate risk factors. Combining the development cycle with continuous risk assessment creates synergies in software development and operation and minimizes vulnerabilities. The article presents the main methods of deploying web applications, ways to increase the level of information security at all stages of product development, compares different types of infrastructures and cloud computing providers, and analyzes modern tools used to automate processes. The cloud cluster was deployed using Terraform and the Jenkins pipeline, which is written in the Groovy programming language, which checks program code for vulnerabilities and allows you to fix violations at the earliest stages of developing secure web applications. The developed cluster implements the proposed algorithm for automated risk assessment based on the calculation (modeling) of threats and vulnerabilities of cloud infrastructure, which operates in real time, periodically collecting all information and adjusting the system in accordance with the risk and applied controls. The algorithm for calculating risk and losses is based on statistical data and the concept of the FAIR information risk assessment methodology. The risk value obtained using the proposed method is quantitative, which allows more efficient forecasting of information security costs in software development. 
653 |a Data analysis 
653 |a Software 
653 |a Product development 
653 |a Software development 
653 |a Risk assessment 
653 |a Applications programs 
653 |a Pipelining (computers) 
653 |a Cloud computing 
653 |a Programming languages 
653 |a Software reliability 
653 |a Threat evaluation 
653 |a Algorithms 
653 |a Clusters 
653 |a Automation 
653 |a Digitization 
653 |a Cybersecurity 
700 1 |a Radivilova, Tamara 
773 0 |t arXiv.org  |g (Dec 15, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148979696/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16190