Graph Learning-based Regional Heavy Rainfall Prediction Using Low-Cost Rain Gauges

Shranjeno v:
Bibliografske podrobnosti
izdano v:arXiv.org (Dec 22, 2024), p. n/a
Glavni avtor: Salcedo, Edwin
Izdano:
Cornell University Library, arXiv.org
Teme:
Online dostop:Citation/Abstract
Full text outside of ProQuest
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3148980742
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148980742 
045 0 |b d20241222 
100 1 |a Salcedo, Edwin 
245 1 |a Graph Learning-based Regional Heavy Rainfall Prediction Using Low-Cost Rain Gauges 
260 |b Cornell University Library, arXiv.org  |c Dec 22, 2024 
513 |a Working Paper 
520 3 |a Accurate and timely prediction of heavy rainfall events is crucial for effective flood risk management and disaster preparedness. By monitoring, analysing, and evaluating rainfall data at a local level, it is not only possible to take effective actions to prevent any severe climate variation but also to improve the planning of surface and underground hydrological resources. However, developing countries often lack the weather stations to collect data continuously due to the high cost of installation and maintenance. In light of this, the contribution of the present paper is twofold: first, we propose a low-cost IoT system for automatic recording, monitoring, and prediction of rainfall in rural regions. Second, we propose a novel approach to regional heavy rainfall prediction by implementing graph neural networks (GNNs), which are particularly well-suited for capturing the complex spatial dependencies inherent in rainfall patterns. The proposed approach was tested using a historical dataset spanning 72 months, with daily measurements, and experimental results demonstrated the effectiveness of the proposed method in predicting heavy rainfall events, making this approach particularly attractive for regions with limited resources or where traditional weather radar or station coverage is sparse. 
653 |a Regional development 
653 |a Weather stations 
653 |a Risk management 
653 |a Low cost 
653 |a Flood management 
653 |a Emergency preparedness 
653 |a Installation costs 
653 |a Rainfall 
653 |a Graph neural networks 
653 |a Spatial dependencies 
653 |a Meteorological radar 
653 |a Effectiveness 
653 |a Regional planning 
653 |a Monitoring 
653 |a Machine learning 
653 |a Data collection 
653 |a Rain 
653 |a Developing countries--LDCs 
653 |a Flood predictions 
773 0 |t arXiv.org  |g (Dec 22, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148980742/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.16842