Quantum simulation of Burgers turbulence: Nonlinear transformation and direct evaluation of statistical quantities

Збережено в:
Бібліографічні деталі
Опубліковано в::arXiv.org (Dec 23, 2024), p. n/a
Автор: Uchida, Fumio
Інші автори: Miyamoto, Koichi, Yamazaki, Soichiro, Fujisawa, Kotaro, Yoshida, Naoki
Опубліковано:
Cornell University Library, arXiv.org
Предмети:
Онлайн доступ:Citation/Abstract
Full text outside of ProQuest
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3148981370
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3148981370 
045 0 |b d20241223 
100 1 |a Uchida, Fumio 
245 1 |a Quantum simulation of Burgers turbulence: Nonlinear transformation and direct evaluation of statistical quantities 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a Fault-tolerant quantum computing is a promising technology to solve linear partial differential equations that are classically demanding to integrate. It is still challenging to solve non-linear equations in fluid dynamics, such as the Burgers equation, using quantum computers. We propose a novel quantum algorithm to solve the Burgers equation. With the Cole-Hopf transformation that maps the fluid velocity field \(u\) to a new field \(\psi\), we apply a sequence of quantum gates to solve the resulting linear equation and obtain the quantum state \(\vert\psi\rangle\) that encodes the solution \(\psi\). We also propose an efficient way to extract stochastic properties of \(u\), namely the multi-point functions of \(u\), from the quantum state of \(\vert\psi\rangle\). Our algorithm offers an exponential advantage over the classical finite difference method in terms of the number of spatial grids when a perturbativity condition in the information-extracting step is met. 
653 |a Transformations (mathematics) 
653 |a Quantum computing 
653 |a Technology assessment 
653 |a Quantum computers 
653 |a Finite difference method 
653 |a Fault tolerance 
653 |a Partial differential equations 
653 |a Fluid flow 
653 |a Algorithms 
653 |a Velocity distribution 
653 |a Fluid dynamics 
653 |a Burgers equation 
653 |a Nonlinear equations 
653 |a Nonlinear dynamics 
700 1 |a Miyamoto, Koichi 
700 1 |a Yamazaki, Soichiro 
700 1 |a Fujisawa, Kotaro 
700 1 |a Yoshida, Naoki 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3148981370/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.17206