Parkinson Disease Detection Based on In-air Dynamics Feature Extraction and Selection Using Machine Learning

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Dec 19, 2024), p. n/a
1. Verfasser: Shin, Jungpil
Weitere Verfasser: Abu Saleh Musa Miah, Hirooka, Koki, Md Al Mehedi Hasan, Maniruzzaman, Md
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3149106416
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3149106416 
045 0 |b d20241219 
100 1 |a Shin, Jungpil 
245 1 |a Parkinson Disease Detection Based on In-air Dynamics Feature Extraction and Selection Using Machine Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a Parkinson's disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)-based techniques to capture movement dynamics during handwriting tasks. In the procedure, we first extracted 65 newly developed kinematic features from the first and last 10% phases of the handwriting task rather than using the entire task. Alongside this, we also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99\% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Machine learning 
653 |a Kinematics 
653 |a Neurological diseases 
653 |a Handwriting 
653 |a Motion perception 
653 |a Disease control 
653 |a Task complexity 
653 |a Parkinson's disease 
700 1 |a Abu Saleh Musa Miah 
700 1 |a Hirooka, Koki 
700 1 |a Md Al Mehedi Hasan 
700 1 |a Maniruzzaman, Md 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149106416/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.17849