Toward an Automated, Proactive Safety Warning System Development for Truck Mounted Attenuators in Mobile Work Zones

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Dec 24, 2024), p. n/a
Egile nagusia: Yu, Xiang
Beste egile batzuk: Zhang, Linlin, Yaw, Adu-Gyamfi
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3149106718
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3149106718 
045 0 |b d20241224 
100 1 |a Yu, Xiang 
245 1 |a Toward an Automated, Proactive Safety Warning System Development for Truck Mounted Attenuators in Mobile Work Zones 
260 |b Cornell University Library, arXiv.org  |c Dec 24, 2024 
513 |a Working Paper 
520 3 |a Even though Truck Mounted Attenuators (TMA)/Autonomous Truck Mounted Attenuators (ATMA) and traffic control devices are increasingly used in mobile work zones to enhance safety, work zone collisions remain a significant safety concern in the United States. In Missouri, there were 63 TMA-related crashes in 2023, a 27% increase compared to 2022. Currently, all the signs in the mobile work zones are passive safety measures, relying on drivers' recognition and attention. Some distracted drivers may ignore these signs and warnings, raising safety concerns. In this study, we proposed an additional proactive warning system that could be applied to the TMA/ATMA to improve overall safety. A feasible solution has been demonstrated by integrating a Panoptic Driving Perception algorithm into the Robot Operating System (ROS) and applying it to the TMA/ATMA systems. This enables us to alert vehicles on a collision course with the TMA. Our experimental setup, currently conducted in a laboratory environment with two ROS robots and a desktop GPU, demonstrates the system's capability to calculate real-time distance and speed and activate warning signals. Leveraging ROS's distributed computing capabilities allows for flexible system deployment and cost reduction. In future field tests, by combining the stopping sight distance (SSD) standards from the AASHTO Green Book, the system enables real-time monitoring of oncoming vehicles and provides additional proactive warnings to enhance the safety of mobile work zones. 
653 |a Field tests 
653 |a Autonomous cars 
653 |a Sight distances 
653 |a Crashes 
653 |a Attenuation 
653 |a Attenuators 
653 |a Warning systems 
653 |a Algorithms 
653 |a Robots 
653 |a Safety measures 
653 |a Real time 
653 |a Traffic control 
653 |a Device driver programs 
653 |a Distributed processing 
653 |a Control equipment 
700 1 |a Zhang, Linlin 
700 1 |a Yaw 
700 1 |a Adu-Gyamfi 
773 0 |t arXiv.org  |g (Dec 24, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149106718/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.18189