MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning

Shranjeno v:
Bibliografske podrobnosti
izdano v:arXiv.org (Dec 24, 2024), p. n/a
Glavni avtor: Chergui, Abdelmadjid
Drugi avtorji: Bezirganyan, Grigor, Sellami, Sana, Berti-Équille, Laure, Fournier, Sébastien
Izdano:
Cornell University Library, arXiv.org
Teme:
Online dostop:Citation/Abstract
Full text outside of ProQuest
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3149106835
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3149106835 
045 0 |b d20241224 
100 1 |a Chergui, Abdelmadjid 
245 1 |a MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 24, 2024 
513 |a Working Paper 
520 3 |a Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics. 
653 |a Performance measurement 
653 |a Data integration 
653 |a Deep learning 
653 |a Machine learning 
653 |a Data search 
653 |a Sampling 
700 1 |a Bezirganyan, Grigor 
700 1 |a Sellami, Sana 
700 1 |a Berti-Équille, Laure 
700 1 |a Fournier, Sébastien 
773 0 |t arXiv.org  |g (Dec 24, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149106835/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.18437