MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning
Shranjeno v:
| izdano v: | arXiv.org (Dec 24, 2024), p. n/a |
|---|---|
| Glavni avtor: | |
| Drugi avtorji: | , , , |
| Izdano: |
Cornell University Library, arXiv.org
|
| Teme: | |
| Online dostop: | Citation/Abstract Full text outside of ProQuest |
| Oznake: |
Brez oznak, prvi označite!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3149106835 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2331-8422 | ||
| 035 | |a 3149106835 | ||
| 045 | 0 | |b d20241224 | |
| 100 | 1 | |a Chergui, Abdelmadjid | |
| 245 | 1 | |a MixMAS: A Framework for Sampling-Based Mixer Architecture Search for Multimodal Fusion and Learning | |
| 260 | |b Cornell University Library, arXiv.org |c Dec 24, 2024 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a Choosing a suitable deep learning architecture for multimodal data fusion is a challenging task, as it requires the effective integration and processing of diverse data types, each with distinct structures and characteristics. In this paper, we introduce MixMAS, a novel framework for sampling-based mixer architecture search tailored to multimodal learning. Our approach automatically selects the optimal MLP-based architecture for a given multimodal machine learning (MML) task. Specifically, MixMAS utilizes a sampling-based micro-benchmarking strategy to explore various combinations of modality-specific encoders, fusion functions, and fusion networks, systematically identifying the architecture that best meets the task's performance metrics. | |
| 653 | |a Performance measurement | ||
| 653 | |a Data integration | ||
| 653 | |a Deep learning | ||
| 653 | |a Machine learning | ||
| 653 | |a Data search | ||
| 653 | |a Sampling | ||
| 700 | 1 | |a Bezirganyan, Grigor | |
| 700 | 1 | |a Sellami, Sana | |
| 700 | 1 | |a Berti-Équille, Laure | |
| 700 | 1 | |a Fournier, Sébastien | |
| 773 | 0 | |t arXiv.org |g (Dec 24, 2024), p. n/a | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3149106835/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u http://arxiv.org/abs/2412.18437 |