Efficient Aircraft Design Optimization Using Multi-Fidelity Models and Multi-fidelity Physics Informed Neural Networks

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:arXiv.org (Dec 24, 2024), p. n/a
Κύριος συγγραφέας: Sarker, Apurba
Έκδοση:
Cornell University Library, arXiv.org
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full text outside of ProQuest
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Περιγραφή
Περίληψη:Aircraft design optimization traditionally relies on computationally expensive simulation techniques such as Finite Element Method (FEM) and Finite Volume Method (FVM), which, while accurate, can significantly slow down the design iteration process. The challenge lies in reducing the computational complexity while maintaining high accuracy for quick evaluations of multiple design alternatives. This research explores advanced methods, including surrogate models, reduced-order models (ROM), and multi-fidelity machine learning techniques, to achieve more efficient aircraft design evaluations. Specifically, the study investigates the application of Multi-fidelity Physics-Informed Neural Networks (MPINN) and autoencoders for manifold alignment, alongside the potential of Generative Adversarial Networks (GANs) for refining design geometries. Through a proof-of-concept task, the research demonstrates the ability to predict high-fidelity results from low-fidelity simulations, offering a path toward faster and more cost effective aircraft design iterations.
ISSN:2331-8422
Πηγή:Engineering Database