LaMI-GO: Latent Mixture Integration for Goal-Oriented Communications Achieving High Spectrum Efficiency

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 18, 2024), p. n/a
Autor principal: Wijesinghe, Achintha
Otros Autores: Suchinthaka Wanninayaka, Wang, Weiwei, Yu-Chieh, Chao, Zhang, Songyang, Ding, Zhi
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3149106957
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3149106957 
045 0 |b d20241218 
100 1 |a Wijesinghe, Achintha 
245 1 |a LaMI-GO: Latent Mixture Integration for Goal-Oriented Communications Achieving High Spectrum Efficiency 
260 |b Cornell University Library, arXiv.org  |c Dec 18, 2024 
513 |a Working Paper 
520 3 |a The recent rise of semantic-style communications includes the development of goal-oriented communications (GOCOMs) remarkably efficient multimedia information transmissions. The concept of GO-COMS leverages advanced artificial intelligence (AI) tools to address the rising demand for bandwidth efficiency in applications, such as edge computing and Internet-of-Things (IoT). Unlike traditional communication systems focusing on source data accuracy, GO-COMs provide intelligent message delivery catering to the special needs critical to accomplishing downstream tasks at the receiver. In this work, we present a novel GO-COM framework, namely LaMI-GO that utilizes emerging generative AI for better quality-of-service (QoS) with ultra-high communication efficiency. Specifically, we design our LaMI-GO system backbone based on a latent diffusion model followed by a vector-quantized generative adversarial network (VQGAN) for efficient latent embedding and information representation. The system trains a common feature codebook the receiver side. Our experimental results demonstrate substantial improvement in perceptual quality, accuracy of downstream tasks, and bandwidth consumption over the state-of-the-art GOCOM systems and establish the power of our proposed LaMI-GO communication framework. 
653 |a Accuracy 
653 |a Communications systems 
653 |a Internet of Things 
653 |a Communication 
653 |a Quality of service architectures 
653 |a Software 
653 |a Efficiency 
653 |a Generative artificial intelligence 
653 |a Edge computing 
653 |a Generative adversarial networks 
653 |a Bandwidths 
700 1 |a Suchinthaka Wanninayaka 
700 1 |a Wang, Weiwei 
700 1 |a Yu-Chieh, Chao 
700 1 |a Zhang, Songyang 
700 1 |a Ding, Zhi 
773 0 |t arXiv.org  |g (Dec 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149106957/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.17839