LMV-RPA: Large Model Voting-based Robotic Process Automation

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 23, 2024), p. n/a
Autor principal: Abdellatif, Osama
Altres autors: Ahmed, Ayman, Hamdi, Ali
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3149107013
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3149107013 
045 0 |b d20241223 
100 1 |a Abdellatif, Osama 
245 1 |a LMV-RPA: Large Model Voting-based Robotic Process Automation 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a Automating high-volume unstructured data processing is essential for operational efficiency. Optical Character Recognition (OCR) is critical but often struggles with accuracy and efficiency in complex layouts and ambiguous text. These challenges are especially pronounced in large-scale tasks requiring both speed and precision. This paper introduces LMV-RPA, a Large Model Voting-based Robotic Process Automation system to enhance OCR workflows. LMV-RPA integrates outputs from OCR engines such as Paddle OCR, Tesseract OCR, Easy OCR, and DocTR with Large Language Models (LLMs) like LLaMA 3 and Gemini-1.5-pro. Using a majority voting mechanism, it processes OCR outputs into structured JSON formats, improving accuracy, particularly in complex layouts. The multi-phase pipeline processes text extracted by OCR engines through LLMs, combining results to ensure the most accurate outputs. LMV-RPA achieves 99 percent accuracy in OCR tasks, surpassing baseline models with 94 percent, while reducing processing time by 80 percent. Benchmark evaluations confirm its scalability and demonstrate that LMV-RPA offers a faster, more reliable, and efficient solution for automating large-scale document processing tasks. 
653 |a Accuracy 
653 |a Layouts 
653 |a Data processing 
653 |a Unstructured data 
653 |a Large language models 
653 |a Automation 
653 |a Engines 
653 |a Optical character recognition 
653 |a Task complexity 
700 1 |a Ahmed, Ayman 
700 1 |a Hamdi, Ali 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149107013/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.17965