Data-driven Modeling of Parameterized Nonlinear Fluid Dynamical Systems with a Dynamics-embedded Conditional Generative Adversarial Network

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:arXiv.org (Dec 23, 2024), p. n/a
প্রধান লেখক: Rostamijavanani, Abdolvahhab
অন্যান্য লেখক: Li, Shanwu, Yang, Yongchao
প্রকাশিত:
Cornell University Library, arXiv.org
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full text outside of ProQuest
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3149107271
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3149107271 
045 0 |b d20241223 
100 1 |a Rostamijavanani, Abdolvahhab 
245 1 |a Data-driven Modeling of Parameterized Nonlinear Fluid Dynamical Systems with a Dynamics-embedded Conditional Generative Adversarial Network 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a This work presents a data-driven solution to accurately predict parameterized nonlinear fluid dynamical systems using a dynamics-generator conditional GAN (Dyn-cGAN) as a surrogate model. The Dyn-cGAN includes a dynamics block within a modified conditional GAN, enabling the simultaneous identification of temporal dynamics and their dependence on system parameters. The learned Dyn-cGAN model takes into account the system parameters to predict the flow fields of the system accurately. We evaluate the effectiveness and limitations of the developed Dyn-cGAN through numerical studies of various parameterized nonlinear fluid dynamical systems, including flow over a cylinder and a 2-D cavity problem, with different Reynolds numbers. Furthermore, we examine how Reynolds number affects the accuracy of the predictions for both case studies. Additionally, we investigate the impact of the number of time steps involved in the process of dynamics block training on the accuracy of predictions, and we find that an optimal value exists based on errors and mutual information relative to the ground truth. 
653 |a Accuracy 
653 |a Parameter identification 
653 |a Parameterization 
653 |a Generative adversarial networks 
653 |a Fluid flow 
653 |a Parameter modification 
653 |a Two dimensional flow 
653 |a System effectiveness 
653 |a Nonlinear systems 
653 |a Dynamical systems 
653 |a Reynolds number 
653 |a Fluid dynamics 
653 |a Nonlinear dynamics 
700 1 |a Li, Shanwu 
700 1 |a Yang, Yongchao 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149107271/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.17978