Optimizing Mobile Cloud Computing: A Comparative Analysis and Innovative Cost-Efficient Partitioning Model

Guardat en:
Dades bibliogràfiques
Publicat a:SN Computer Science vol. 6, no. 1 (Jan 2025), p. 43
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3149316457
003 UK-CbPIL
022 |a 2662-995X 
022 |a 2661-8907 
024 7 |a 10.1007/s42979-024-03570-1  |2 doi 
035 |a 3149316457 
045 2 |b d20250101  |b d20250131 
245 1 |a Optimizing Mobile Cloud Computing: A Comparative Analysis and Innovative Cost-Efficient Partitioning Model 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Mobile cloud computing (MCC) integrates mobile devices with cloud computing to enhance performance and provide scalable services. It enables the partitioning of computationally intensive mobile applications, utilizing the cloud resources for remote execution. This process is vital for optimizing resource utilization and energy efficiency in distributed computing environments. Initially, static application partitioning was developed, dividing system resources into fixed-sized partitions. Though it is simple and reduces operational overhead, it lacks adaptability to dynamic computing environments due to mobility. Modern frameworks use runtime partitioning, dynamically allocating resources based on runtime profiling, which increases computational overhead and energy consumption. Despite various studies on MCC, there is a notable oversight in numerical analysis of application partitioning. This paper presents a comparative numerical study of existing partitioning techniques and proposes a Cost-Efficient Partitioning (CEP) model. The CEP model combines the static nature to reduce computational overhead with the dynamic nature to address runtime challenges. This research addresses the shortcomings of existing approaches, potentially transforming computational offloading into energy-saving solutions. Our results show that the execution time (ET) of a task in the CEP model is 0.826 s, which is longer than the ET of static partitioning however shorter than the 0.962 s of dynamic partitioning models. Similarly, the CEP's energy consumption in a test scenario is 0.609 J, slightly higher than the 0.587 J of static partitioning but lower than the 0.711 J of dynamic partitioning. 
653 |a Integer programming 
653 |a Collaboration 
653 |a Edge computing 
653 |a Applications programs 
653 |a Mathematical models 
653 |a Costs 
653 |a Mobile communications networks 
653 |a Cloud computing 
653 |a Numerical analysis 
653 |a Optimization 
653 |a Mobile computing 
653 |a Computation offloading 
653 |a Decomposition 
653 |a Resource utilization 
653 |a Energy consumption 
653 |a Partitioning 
653 |a Distributed processing 
653 |a Comparative analysis 
653 |a Run time (computers) 
773 0 |t SN Computer Science  |g vol. 6, no. 1 (Jan 2025), p. 43 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149316457/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3149316457/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3149316457/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch