AI in Structural Health Monitoring for Infrastructure Maintenance and Safety

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Infrastructures vol. 9, no. 12 (2024), p. 225
Kaituhi matua: Plevris, Vagelis
Ētahi atu kaituhi: Papazafeiropoulos, George
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3149643517
003 UK-CbPIL
022 |a 2412-3811 
024 7 |a 10.3390/infrastructures9120225  |2 doi 
035 |a 3149643517 
045 2 |b d20240101  |b d20241231 
100 1 |a Plevris, Vagelis  |u College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar 
245 1 |a AI in Structural Health Monitoring for Infrastructure Maintenance and Safety 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a This study explores the growing influence of artificial intelligence (AI) on structural health monitoring (SHM), a critical aspect of infrastructure maintenance and safety. This study begins with a bibliometric analysis to identify current research trends, key contributing countries, and emerging topics in AI-integrated SHM. We examine seven core areas where AI significantly advances SHM capabilities: (1) data acquisition and sensor networks, highlighting improvements in sensor technology and data collection; (2) data processing and signal analysis, where AI techniques enhance feature extraction and noise reduction; (3) anomaly detection and damage identification using machine learning (ML) and deep learning (DL) for precise diagnostics; (4) predictive maintenance, using AI to optimize maintenance scheduling and prevent failures; (5) reliability and risk assessment, integrating diverse datasets for real-time risk analysis; (6) visual inspection and remote monitoring, showcasing the role of AI-powered drones and imaging systems; and (7) resilient and adaptive infrastructure, where AI enables systems to respond dynamically to changing conditions. This review also addresses the ethical considerations and societal impacts of AI in SHM, such as data privacy, equity, and transparency. We conclude by discussing future research directions and challenges, emphasizing the potential of AI to enhance the efficiency, safety, and sustainability of infrastructure systems. 
653 |a Signal analysis 
653 |a Data processing 
653 |a Data acquisition 
653 |a Trends 
653 |a Noise prediction 
653 |a Nondestructive testing 
653 |a Civil engineering 
653 |a Maintenance management 
653 |a Damage detection 
653 |a Remote monitoring 
653 |a Data analysis 
653 |a Automation 
653 |a Machine learning 
653 |a Infrastructure 
653 |a Risk analysis 
653 |a Data collection 
653 |a Internet of Things 
653 |a Vibration 
653 |a Risk assessment 
653 |a Accountability 
653 |a Structural health monitoring 
653 |a Big Data 
653 |a Construction 
653 |a Adaptive systems 
653 |a Embedded systems 
653 |a Bibliometrics 
653 |a Artificial intelligence 
653 |a Computer vision 
653 |a Noise reduction 
653 |a Decision making 
653 |a Sensors 
653 |a Algorithms 
653 |a Anomalies 
653 |a Deep learning 
653 |a Real time 
653 |a Bridges 
653 |a Nuclear power plants 
653 |a Predictive maintenance 
700 1 |a Papazafeiropoulos, George  |u School of Civil Engineering, National Technical University of Athens, 15780 Athens, Greece; <email>gpapazafeiropoulos@yahoo.gr</email> 
773 0 |t Infrastructures  |g vol. 9, no. 12 (2024), p. 225 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149643517/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3149643517/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3149643517/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch