A Dual Filter Based on Radial Basis Function Neural Networks and Kalman Filters with Application to Numerical Wave Prediction Models

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 24, no. 24 (2024), p. 8006
Autor principal: Donas, Athanasios
Otros Autores: Kordatos, Ioannis, Alexandridis, Alex, Galanis, George, Famelis, Ioannis Th
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3149751986
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s24248006  |2 doi 
035 |a 3149751986 
045 2 |b d20240101  |b d20241231 
084 |a 231630  |2 nlm 
100 1 |a Donas, Athanasios  |u Department of Electrical and Electronic Engineering, University of West Attica, Ancient Olive Grove Campus, 250, Thivon Ave., Egaleo, 12241 Athens, Greece; <email>adonas@uniwa.gr</email> (A.D.); <email>ikordatos@uniwa.gr</email> (I.K.); <email>ifamelis@uniwa.gr</email> (I.T.F.) 
245 1 |a A Dual Filter Based on Radial Basis Function Neural Networks and Kalman Filters with Application to Numerical Wave Prediction Models 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The aim of this study is to introduce and evaluate a dual filter that combines Radial Basis Function neural networks and Kalman filters to enhance the accuracy of numerical wave prediction models. Unlike the existing methods, which focus solely on systematic errors, the proposed framework concurrently targets both systematic and non-systematic parts of forecast errors, significantly reducing the bias and variability in significant wave height predictions. The produced filter is self-adaptive, identifying optimal Radial Basis Function network configurations through an automated process involving various network parameters tuning. The produced computational system is assessed using a time-window procedure applied across divergent time periods and regions in the Aegean Sea and the Pacific Ocean. The results reveal a consistent performance, outperforming classic Kalman filters with an average reduction of 53% in bias and 28% in RMSE, underlining the dual filter’s potential as a robust post-processing tool for environmental simulations. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Weather forecasting 
653 |a Datasets 
653 |a Algorithms 
653 |a Kalman filters 
653 |a Neural networks 
653 |a Data assimilation 
653 |a Case studies 
653 |a Bias 
700 1 |a Kordatos, Ioannis  |u Department of Electrical and Electronic Engineering, University of West Attica, Ancient Olive Grove Campus, 250, Thivon Ave., Egaleo, 12241 Athens, Greece; <email>adonas@uniwa.gr</email> (A.D.); <email>ikordatos@uniwa.gr</email> (I.K.); <email>ifamelis@uniwa.gr</email> (I.T.F.) 
700 1 |a Alexandridis, Alex  |u Department of Electrical and Electronic Engineering, University of West Attica, Ancient Olive Grove Campus, 250, Thivon Ave., Egaleo, 12241 Athens, Greece; <email>adonas@uniwa.gr</email> (A.D.); <email>ikordatos@uniwa.gr</email> (I.K.); <email>ifamelis@uniwa.gr</email> (I.T.F.) 
700 1 |a Galanis, George  |u Hellenic Naval Academy, Hatzikiriakion, 18539 Piraeus, Greece; <email>ggalanis@hna.gr</email> 
700 1 |a Famelis, Ioannis Th  |u Department of Electrical and Electronic Engineering, University of West Attica, Ancient Olive Grove Campus, 250, Thivon Ave., Egaleo, 12241 Athens, Greece; <email>adonas@uniwa.gr</email> (A.D.); <email>ikordatos@uniwa.gr</email> (I.K.); <email>ifamelis@uniwa.gr</email> (I.T.F.) 
773 0 |t Sensors  |g vol. 24, no. 24 (2024), p. 8006 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149751986/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3149751986/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3149751986/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch