Data Digitization in Manufacturing Factory Using Palantir Foundry Solution

Gardado en:
Detalles Bibliográficos
Publicado en:Processes vol. 12, no. 12 (2024), p. 2816
Autor Principal: Krajný, Peter
Outros autores: Janeková, Jaroslava, Fabianová, Jana
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3149755312
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr12122816  |2 doi 
035 |a 3149755312 
045 2 |b d20240101  |b d20241231 
084 |a 231553  |2 nlm 
100 1 |a Krajný, Peter  |u Institute of Industrial Engineering, Management and Applied Mathematics, Technical University of Kosice, Park Komenského 5, 042 00 Košice, Slovakia; <email>peter.krajny@student.tuke.sk</email> (P.K.); <email>jaroslava.janekova@tuke.sk</email> (J.J.) 
245 1 |a Data Digitization in Manufacturing Factory Using Palantir Foundry Solution 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a This research describes an online solution for the collection and processing of production data, which are gathered from manufacturing and assembly processes at automotive companies. The solution describes the process for live monitoring of the production health and then evaluation through reports, with the option to generate reports for up to six months. Since the data are located in multiple sources, it is challenging to monitor them live or generate reports on demand. The solution described in this research outlines applications that simplify users’ tasks and provide immediate insights into the processes and health of production lines. Research will be divided into three applications which are delivered in one package, which is called Cycle Time Deviation (CTD): (i) workshop application for live monitoring; (ii) for evaluating data older than 24 h, the shift report application; and (iii) for comparing and monitoring the impact of process changes on the analysis, the before and after application—the Plant Improvement Tracker (PIT)—will be presented. The aim of the research is to describe the proposed solution that was implemented in a multinational automotive corporation and to outline the benefits gained from the implementation. 
653 |a Innovations 
653 |a Big Data 
653 |a Artificial intelligence 
653 |a Digital transformation 
653 |a Production lines 
653 |a Business intelligence 
653 |a Decision making 
653 |a Small & medium sized enterprises-SME 
653 |a Data processing 
653 |a Impact analysis 
653 |a Data analysis 
653 |a Cycle time 
653 |a Digitization 
653 |a Automation 
653 |a Manufacturing 
653 |a Logistics 
653 |a Industry 4.0 
653 |a Human error 
653 |a Digital technology 
700 1 |a Janeková, Jaroslava  |u Institute of Industrial Engineering, Management and Applied Mathematics, Technical University of Kosice, Park Komenského 5, 042 00 Košice, Slovakia; <email>peter.krajny@student.tuke.sk</email> (P.K.); <email>jaroslava.janekova@tuke.sk</email> (J.J.) 
700 1 |a Fabianová, Jana  |u Institute of Logistics and Transport, Faculty of Mining, Ecology, Process Control and Geotechnology, Technical University of Kosice, Letná 9, 042 00 Košice, Slovakia 
773 0 |t Processes  |g vol. 12, no. 12 (2024), p. 2816 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149755312/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3149755312/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3149755312/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch