A novel medical image enhancement algorithm based on CLAHE and pelican optimization

Salvato in:
Dettagli Bibliografici
Pubblicato in:Multimedia Tools and Applications vol. 83, no. 42 (Dec 2024), p. 90069
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3149797872
003 UK-CbPIL
022 |a 1380-7501 
022 |a 1573-7721 
024 7 |a 10.1007/s11042-024-19070-6  |2 doi 
035 |a 3149797872 
045 2 |b d20241201  |b d20241231 
084 |a 108528  |2 nlm 
245 1 |a A novel medical image enhancement algorithm based on CLAHE and pelican optimization 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Medical image enhancement is considered a challenging image-processing framework because the low quality of images resulting after acquisition and transmission seriously affects the clinical diagnosis and observation. In order to improve the medical image visual quality, a novel medical image enhancement algorithm that is based on contrast adaptive histogram equalization and pelican optimization algorithm is proposed in this work. The estimation process using our proposed model improves the efficiency of the operation and provides superior results in terms of image quality and contrast. There are three steps in the enhancement process. The primary step includes medical image generation using a Text-to-image generative model. Secondly, the estimation of the clip-limit, which controls the enhancing performance. Finally, the operation of enhancing the medical images using our proposed method. The simulation experiments prove that our proposed algorithm achieves superior performance qualitatively and quantitatively, compared with the state-of-the-art experimental methods, Upon a thorough examination and comparative analysis of performance parameters. Furthermore, the advantageous characteristic of this algorithm is its applicability in multiple types of images. Improving the quality of the medical images using our algorithm allows us to attain a superior visual impact on the processed image, and to increase the rate of conformity in the clinical diagnosis. Our proposed model illustrates the structure and forms of relevant details, contained in the medical images. This leads to an increase in overall contrast and enhances visual perception. 
653 |a Performance enhancement 
653 |a Visual perception 
653 |a Image enhancement 
653 |a Visual observation 
653 |a Medical imaging 
653 |a Optimization 
653 |a Impact analysis 
653 |a Image transmission 
653 |a Diagnosis 
653 |a Image acquisition 
653 |a Algorithms 
653 |a Image quality 
653 |a Image processing 
653 |a Visual perception driven algorithms 
653 |a Adaptive algorithms 
773 0 |t Multimedia Tools and Applications  |g vol. 83, no. 42 (Dec 2024), p. 90069 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149797872/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3149797872/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch