An Accelerated Proximal Alternating Direction Method of Multipliers for Optimal Decentralized Control of Uncertain Systems
Guardado en:
| Publicado en: | Journal of Optimization Theory and Applications vol. 204, no. 1 (Jan 2025), p. 9 |
|---|---|
| Publicado: |
Springer Nature B.V.
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | To ensure the system stability of the H2<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="10957_2024_2592_Article_IEq1.gif" />-guaranteed cost optimal decentralized control (ODC) problem, we formulate an approximate semidefinite programming (SDP) problem that leverages the block diagonal structure of the decentralized controller’s gain matrix. To minimize data storage requirements and enhance computational efficiency, we employ the Kronecker product to vectorize the SDP problem into a conic programming (CP) problem. We then propose a proximal alternating direction method of multipliers (PADMM) to solve the dual of the resulting CP problem. By using the equivalence between the semi-proximal ADMM and the (partial) proximal point algorithm, we identify the non-expansive operator of PADMM, enabling the use of Halpern fixed-point iteration to accelerate the algorithm. Finally, we demonstrate that the sequence generated by the proposed accelerated PADMM exhibits a fast convergence rate for the Karush–Kuhn–Tucker residual. Numerical experiments confirm that the accelerated algorithm outperforms the well-known COSMO, MOSEK, and SCS solvers in efficiently solving large-scale CP problems, particularly those arising from H2<inline-graphic specific-use="web" mime-subtype="GIF" xlink:href="10957_2024_2592_Article_IEq2.gif" />-guaranteed cost ODC problems. |
|---|---|
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-024-02592-2 |
| Fuente: | ABI/INFORM Global |