Mathematical Programming and Graph Neural Networks illuminate functional heterogeneity of pathways in disease

Uloženo v:
Podrobná bibliografie
Vydáno v:bioRxiv (Jan 27, 2025)
Hlavní autor: Triantafyllidis, Charalampos
Vydáno:
Cold Spring Harbor Laboratory Press
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3149932259
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.12.28.630070  |2 doi 
035 |a 3149932259 
045 0 |b d20250127 
100 1 |a Triantafyllidis, Charalampos 
245 1 |a Mathematical Programming and Graph Neural Networks illuminate functional heterogeneity of pathways in disease 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 27, 2025 
513 |a Working Paper 
520 3 |a We employ a computationally intensive framework that integrates mathematical programming and graph neural networks to elucidate functional phenotypic heterogeneity in disease by classifying entire pathways under various conditions of interest. Our approach combines three distinct yet seamlessly integrated modelling schemes: i) we first leverage Prior-Knowledge Networks (PKNs) derived from comprehensive and established databases to reconstruct their topology using genomic and transcriptomic data via mathematical programming optimization, ii) we apply causal learning via Additive Noise Models (ANMs) to further prune the optimized networks, and iii) we apply tailored Graph Convolutional Networks (GCNs) to classify each network as a single data point at graph-level, using Mode of Regulation (MoR) and gene activity profiles as node embeddings. These networks may vary in their biological or molecular annotations, which serves as a labelling scheme for their supervised classification. We demonstrate the framework in the DNA damage and repair pathway using the TP53 regulon in a pancancer study, classifying Gene Regulatory Networks (GRNs) across different TP53 mutation types. This scalable approach enables the classification of diverse conditions while addressing the multifactorial nature of diseases. It disentangles their polygenic complexity and reveals new functional patterns through a causal representation.Competing Interest StatementThe authors have declared no competing interest.Footnotes* -Abstract -Figures -Modelling methods used and corresponding results -Enchance reading and fix grammar/typos , figure legends/captions* https://github.com/harrytr/HarmonizeR 
653 |a Mathematical programming 
653 |a p53 Protein 
653 |a Transcriptomics 
653 |a Precision medicine 
653 |a DNA repair 
653 |a Mathematical models 
653 |a Neural networks 
653 |a DNA damage 
773 0 |t bioRxiv  |g (Jan 27, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3149932259/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.12.28.630070v2