Curing simulation and data-driven curing curve prediction of thermoset composites

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Scientific Reports (Nature Publisher Group) vol. 14, no. 1 (2024), p. 31860
Хэвлэсэн:
Nature Publishing Group
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3150196961
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-024-83379-3  |2 doi 
035 |a 3150196961 
045 2 |b d20240101  |b d20241231 
084 |a 274855  |2 nlm 
245 1 |a Curing simulation and data-driven curing curve prediction of thermoset composites 
260 |b Nature Publishing Group  |c 2024 
513 |a Journal Article 
520 3 |a Molding has been widely used to manufacture thermoset composite structures in the aerospace and automotive industries owing to its efficiency in reducing the number of parts and the manufacturing cost. For such molded composite parts, the degree-of-cure curve is generally used to evaluate the solidification of the resin. Nevertheless, in simulation of cure is not the cure model itself, but rather knowing the initial conditions such as fiber volume fraction, initial curing degree, convective boundary conditions etc. Additionally, solving the heat transfer coupled with the cure kinetics presents additional requirements for time, making artificial intelligence tools promising for these problems. This paper focuses on developing a data-driven approach for predicting the degree-of-cure curve. The simulated degree-of-cure curve for the model corresponds to a specific temperature–time curve was verified by the published value. Then, the temperature–time and the resulting degree-of-cure-time curves obtained from finite element simulations were created for training the prediction models using machine learning approaches of support vector regression (SVR), back propagation (BP) neural network and BP neural network optimized by genetic algorithm (GA-BP). The validation and evaluation indices illustrate that the degree-of-cure curve prediction model trained by the GA-BP neural network yields the highest accuracy. 
653 |a Curing 
653 |a Artificial intelligence 
653 |a Heat transfer 
653 |a Boundary conditions 
653 |a Temperature requirements 
653 |a Regression analysis 
653 |a Neural networks 
653 |a Automobile industry 
653 |a Mathematical models 
653 |a Prediction models 
653 |a Machine learning 
653 |a Environmental 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 14, no. 1 (2024), p. 31860 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3150196961/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3150196961/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch