Multi-objective optimization of ternary blends of Algal biodiesel–diesel–1-decanol to mitigate environmental pollution in powering a diesel engine using RSM, ANOVA, and artificial bee colony

Enregistré dans:
Détails bibliographiques
Publié dans:Environmental Science and Pollution Research vol. 31, no. 60 (Dec 2024), p. 67664
Publié:
Springer Nature B.V.
Sujets:
Accès en ligne:Citation/Abstract
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3150200209
003 UK-CbPIL
022 |a 0944-1344 
022 |a 1614-7499 
024 7 |a 10.1007/s11356-023-30948-0  |2 doi 
035 |a 3150200209 
045 2 |b d20241201  |b d20241231 
084 |a 108413  |2 nlm 
245 1 |a Multi-objective optimization of ternary blends of Algal biodiesel–diesel–1-decanol to mitigate environmental pollution in powering a diesel engine using RSM, ANOVA, and artificial bee colony 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a This research presents an in-depth examination that utilizes a hybrid technique consisting of response surface methodology (RSM) for experimental design, analysis of variance (ANOVA) for model development, and the artificial bee colony (ABC) algorithm for multi-objective optimization. The study aims to enhance engine performance and reduce emissions through the integration of global maxima for brake thermal efficiency (BTE) and global minima for brake-specific fuel consumption (BSFC), hydrocarbon (HC), nitrogen oxides (NOx), and carbon monoxide (CO) emissions into a composite objective function. The relative importance of each objective was determined using weighted combinations. The ABC algorithm effectively explored the parameter space, determining the optimum values for brake mean effective pressure (BMEP) and 1-decanol% in the fuel mix. The results showed that the optimized solution, with a BMEP of 4.91 and a 1-decanol % of 9.82, improved engine performance and cut emissions significantly. Notably, the BSFC was reduced to 0.29 kg/kWh, demonstrating energy efficiency. CO emissions were lowered to 0.598 vol.%, NOx emissions to 1509.91 ppm, and HC emissions to 29.52 vol.%. Furthermore, the optimizing procedure produced an astounding brake thermal efficiency (BTE) of 28.78%, indicating better thermal energy efficiency within the engine. The ABC algorithm enhanced engine performance and lowered emissions overall, highlighting the advantageous trade-offs made by a weighted mix of objectives. The study's findings contribute to more sustainable combustion engine practises by providing crucial insights for upgrading engines with higher efficiency and fewer emissions, thus furthering renewable energy aspirations. 
653 |a Swarm intelligence 
653 |a Nitrogen oxides 
653 |a Diesel engines 
653 |a Algorithms 
653 |a Carbon monoxide 
653 |a Experimental design 
653 |a Energy efficiency 
653 |a Response surface methodology 
653 |a Decanol 
653 |a Multiple objective analysis 
653 |a Biodiesel fuels 
653 |a Variance analysis 
653 |a Colonies 
653 |a Fuel consumption 
653 |a Photochemicals 
653 |a Thermodynamic efficiency 
653 |a Energy consumption 
653 |a Emissions control 
653 |a Algae 
653 |a Thermal energy 
653 |a Maxima 
653 |a Emissions 
653 |a Renewable energy 
653 |a Biofuels 
653 |a Objective function 
653 |a Optimization 
653 |a Design of experiments 
653 |a Bees 
653 |a Economic 
653 |a Environmental 
773 0 |t Environmental Science and Pollution Research  |g vol. 31, no. 60 (Dec 2024), p. 67664 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3150200209/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3150200209/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch