Toward topic diversity in recommender systems: integrating topic modeling with a hashing algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Aslib Journal of Information Management vol. 77, no. 1 (2025), p. 47-69
Autor principal: Yang, Donghui
Otros Autores: Wang, Yan, Shi, Zhaoyang, Wang, Huimin
Publicado:
Emerald Group Publishing Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3150501362
003 UK-CbPIL
022 |a 2050-3806 
022 |a 1758-3748 
022 |a 0001-253X 
024 7 |a 10.1108/AJIM-01-2023-0019  |2 doi 
035 |a 3150501362 
045 2 |b d20250101  |b d20250228 
084 |a 38172  |2 nlm 
100 1 |a Yang, Donghui  |u School of Economics and Management, Southeast University, Nanjing, China 
245 1 |a Toward topic diversity in recommender systems: integrating topic modeling with a hashing algorithm 
260 |b Emerald Group Publishing Limited  |c 2025 
513 |a Journal Article 
520 3 |a PurposeImproving the diversity of recommendation information has become one of the latest research hotspots to solve information cocoons. Aiming to achieve both high accuracy and diversity of recommender system, a hybrid method has been proposed in this paper. This study aims to discuss the aforementioned method.Design/methodology/approachThis paper integrates latent Dirichlet allocation (LDA) model and locality-sensitive hashing (LSH) algorithm to design topic recommendation system. To measure the effectiveness of the method, this paper builds three-level categories of journal paper abstracts on the Web of Science platform as experimental data.Findings(1) The results illustrate that the diversity of recommended items has been significantly enhanced by leveraging hashing function to overcome information cocoons. (2) Integrating topic model and hashing algorithm, the diversity of recommender systems could be achieved without losing the accuracy of recommender systems in a certain degree of refined topic levels.Originality/valueThe hybrid recommendation algorithm developed in this paper can overcome the dilemma of high accuracy and low diversity. The method could ameliorate the recommendation in business and service industries to address the problems of information overload and information cocoons. 
653 |a Accuracy 
653 |a Methods 
653 |a Collaboration 
653 |a Recommender systems 
653 |a Algorithms 
653 |a Data mining 
653 |a Hash based algorithms 
653 |a Service industries 
653 |a Social networks 
653 |a Semantics 
653 |a Models 
653 |a Organizational effectiveness 
653 |a Topics 
653 |a Information 
653 |a Locality 
653 |a Abstracts 
700 1 |a Wang, Yan  |u School of Economics and Management, Southeast University, Nanjing, China 
700 1 |a Shi, Zhaoyang  |u School of Economics and Management, Southeast University, Nanjing, China 
700 1 |a Wang, Huimin  |u School of Economics and Management, Southeast University, Nanjing, China 
773 0 |t Aslib Journal of Information Management  |g vol. 77, no. 1 (2025), p. 47-69 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3150501362/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3150501362/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3150501362/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch