Design and validation of the evolved version of the tactical separation system

Guardado en:
Detalles Bibliográficos
Publicado en:Aircraft Engineering and Aerospace Technology vol. 97, no. 1 (2025), p. 128-136
Autor principal: Vittorio Di Vito
Otros Autores: Torrano, Giulia, Cerasuolo, Giovanni, Ferrucci, Michele
Publicado:
Emerald Group Publishing Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:PurposeThe small air transport (SAT) domain is gaining increasing interest over the past decade, based on its perspective relevance in enabling efficient travel over a regional range, by exploiting small airports and fixed wing aircraft with up to 19 seats (EASA CS-23 category). To support its wider adoption, it is needed to enable single pilot operations.Design/methodology/approachAn integrated mission management system (IMMS) has been designed and implemented, able to automatically optimize the aircraft path by considering trajectory optimization needs. It takes into account both traffic scenario and weather actual and forecasted condition and is also able to select best destination airport, should pilot incapacitation occur during flight. As part of the IMMS, dedicated evolved tactical separation system (Evo-TSS) has been designed to provide elaboration of both surrounding and far located traffic and subsequent traffic clustering, to support the trajectory planning/re-planning by the IMMS.FindingsThe Clean Sky 2-funded project COAST (Cost Optimized Avionics SysTem) successfully designed and validated through flight demonstrations relevant technologies enabling affordable cockpit and avionics and supporting single pilot operations for SAT vehicles. These technologies include the TSS in its baseline and evolved versions, included in the IMMS.Originality/valueThis paper describes the TSS baseline version and the basic aspects of the Evo-TSS design. It is aimed to outline the implementation of the Evo-TSS dedicated software in Matlab/Simulink environment, the planned laboratory validation campaign and the results of the validation exercises in fast-time Matlab/Simulink environment, which were successfully concluded in 2023.
ISSN:1748-8842
1758-4213
0002-2667
DOI:10.1108/AEAT-03-2024-0080
Fuente:Science Database