Visual field specializations in mouse dLGN
保存先:
| 出版年: | bioRxiv (Jan 3, 2025) |
|---|---|
| 第一著者: | |
| その他の著者: | , , , |
| 出版事項: |
Cold Spring Harbor Laboratory Press
|
| 主題: | |
| オンライン・アクセス: | Citation/Abstract Full Text - PDF Full text outside of ProQuest |
| タグ: |
タグなし, このレコードへの初めてのタグを付けませんか!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3151289819 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2692-8205 | ||
| 024 | 7 | |a 10.1101/2025.01.03.631238 |2 doi | |
| 035 | |a 3151289819 | ||
| 045 | 0 | |b d20250103 | |
| 100 | 1 | |a Cha, Kuwook | |
| 245 | 1 | |a Visual field specializations in mouse dLGN | |
| 260 | |b Cold Spring Harbor Laboratory Press |c Jan 3, 2025 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a Neural circuits throughout the visual system process features differently depending on where they appear in the visual field. While such location-specific processing exists in retina and in superior colliculus, the dorsal lateral geniculate nucleus (dLGN) is thought to lack this specialization. Here, we show systematic visual field biases in dLGN's representation of spatial frequency, orientation, direction, and temporal frequency. Using axon-localized calcium indicators and widefield imaging, we discovered that dLGN boutons show systematic gradients in feature selectivity across the visual cortex (V1), while its retinal inputs lack such gradients for these features. Selective disruption of V1 feedback to dLGN perturbed gradient structure and magnitude. These results suggest that dLGN circuits transform uniformly distributed retinal feature inputs into spatially-biased representations along with cortical feedback. dLGN feature biases would allow a functional stream to detect ethologically salient visual inputs.Competing Interest StatementThe authors have declared no competing interest. | |
| 653 | |a Neuroethology | ||
| 653 | |a Functional morphology | ||
| 653 | |a Superior colliculus | ||
| 653 | |a Visual system | ||
| 653 | |a Temporal lobe | ||
| 653 | |a Lateral geniculate nucleus | ||
| 653 | |a Calcium imaging | ||
| 653 | |a Retina | ||
| 653 | |a Visual pathways | ||
| 653 | |a Feedback | ||
| 653 | |a Visual cortex | ||
| 653 | |a Presynapse | ||
| 653 | |a Orientation behavior | ||
| 653 | |a Information processing | ||
| 653 | |a Frequency dependence | ||
| 653 | |a Visual field | ||
| 653 | |a Neuroimaging | ||
| 653 | |a Neural networks | ||
| 700 | 1 | |a Aline Giselle Rangel Olguin | |
| 700 | 1 | |a Sharif, Reza | |
| 700 | 1 | |a Cook, Erik P | |
| 700 | 1 | |a Krishnaswamy, Arjun | |
| 773 | 0 | |t bioRxiv |g (Jan 3, 2025) | |
| 786 | 0 | |d ProQuest |t Biological Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3151289819/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3151289819/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u https://www.biorxiv.org/content/10.1101/2025.01.03.631238v1 |