Estimating time and frequency under imperfect channel knowledge using ECM and SAGE algorithms in multi-relay cooperative networks

Guardado en:
Detalles Bibliográficos
Publicado en:EURASIP Journal on Wireless Communications and Networking vol. 2025, no. 1 (Dec 2025), p. 1
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3151295877
003 UK-CbPIL
022 |a 1687-1472 
022 |a 1687-1499 
024 7 |a 10.1186/s13638-024-02418-9  |2 doi 
035 |a 3151295877 
045 2 |b d20251201  |b d20251231 
084 |a 130323  |2 nlm 
245 1 |a Estimating time and frequency under imperfect channel knowledge using ECM and SAGE algorithms in multi-relay cooperative networks 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a The OFDM system is popular due to its broadband capabilities, but because it employs the multicarrier concept, synchronization issues may arise. These errors are caused by the incompatibility of the transmitted and received signals. The performance of multiple relay cooperative systems is assessed in this study using receiver compensation and estimation of multicarrier frequency offsets (MCFOs) and multiple timing offsets (MTOs). To demonstrate improved bit error rate (BER) performance, MCFOs and MTOs should be treated with less computational complexity. At the receiver end, the maximum likelihood (ML) approach is used to decode data and estimate offsets. The ML approach estimates using the ECM and SAGE algorithms. In terms of BER and SNR after estimation, the SAGE algorithm outperforms the ECM approach. A performance analysis of the estimated time and carrier frequency offsets was performed using the ECM and SAGE algorithms. Furthermore, the statistical percentage difference demonstrates that the maximum probability strategy for compensating the CFO and TO is effective. The statistical percentage difference underscores the effectiveness of compensating CFO and TO through ECM and SAGE algorithm within the maximum likelihood framework. 
653 |a Maximum likelihood decoding 
653 |a Maximum likelihood estimates 
653 |a Effectiveness 
653 |a Broadband 
653 |a Algorithms 
653 |a Relay 
653 |a Bit error rate 
653 |a Error analysis 
653 |a Incompatibility 
653 |a Time synchronization 
653 |a Carrier frequencies 
653 |a Offsets 
653 |a Statistical analysis 
653 |a Estimation 
773 0 |t EURASIP Journal on Wireless Communications and Networking  |g vol. 2025, no. 1 (Dec 2025), p. 1 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3151295877/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3151295877/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch