Improving 2 m temperature forecasts of numerical weather prediction through a machine learning-based Bayesian model

Spremljeno u:
Bibliografski detalji
Izdano u:Meteorology and Atmospheric Physics vol. 137, no. 1 (Jan 2025), p. 9
Izdano:
Springer Nature B.V.
Teme:
Online pristup:Citation/Abstract
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3151472444
003 UK-CbPIL
022 |a 0177-7971 
022 |a 1436-5065 
022 |a 0066-6394 
022 |a 0066-6416 
024 7 |a 10.1007/s00703-024-01056-6  |2 doi 
035 |a 3151472444 
045 2 |b d20250101  |b d20250131 
084 |a 65695  |2 nlm 
245 1 |a Improving 2 m temperature forecasts of numerical weather prediction through a machine learning-based Bayesian model 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Temperature is a fundamental meteorological factor significantly impacting human life and socio-economic development. This study applies a multi-model fusion technique, integrating three artificial intelligence (AI) methods, to improve temperature forecast accuracy by addressing systematic errors and biases in the European Centre for Medium-Range Weather Forecasts (ECMWF) 2 m temperature predictions for Xiong’an New Area and its upstream regions. Using ECMWF forecast data from January 1, 2018, to December 31, 2021, along with ERA5 reanalysis data, we optimized a Bayesian model averaging (BMA_OP) approach, combining linear regression, LightGBM, and UNet to revise the 2 m temperature forecast. BMA_OP demonstrated improved performance, achieving an overall root-mean-square error (RMSE) of 1.15 °C, an average prediction accuracy of 73% for the ECMWF model, and an accuracy of over 91% for BMA_OP, marking a 24.7% improvement. To further assess generalization, we tested the model using full-year 2022 data, where BMA_OP outperformed the ECMWF model with an RMSE, mean absolute error (MAE), and accuracy of 1.31 °C, 1.03 °C, and 87%, respectively—exceeding the ECMWF model’s results by 16%, 13%, and 6%. These findings confirm the effectiveness of BMA_OP-based multi-model fusion technology for temperature correction. 
653 |a Weather forecasting 
653 |a Forecasting data 
653 |a Accuracy 
653 |a Artificial intelligence 
653 |a Forecast accuracy 
653 |a Socioeconomic aspects 
653 |a Weather 
653 |a Temperature 
653 |a Machine learning 
653 |a Numerical weather forecasting 
653 |a Marking and tracking techniques 
653 |a Systematic errors 
653 |a Bayesian analysis 
653 |a Predictions 
653 |a Root-mean-square errors 
653 |a Economic development 
653 |a Medium-range forecasting 
653 |a Temperature forecasting 
653 |a Probability theory 
653 |a Bayesian theory 
653 |a Environmental 
773 0 |t Meteorology and Atmospheric Physics  |g vol. 137, no. 1 (Jan 2025), p. 9 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3151472444/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3151472444/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch