Advancing paleontology: a survey on deep learning methodologies in fossil image analysis

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:The Artificial Intelligence Review vol. 58, no. 3 (Mar 2025), p. 83
Baskı/Yayın Bilgisi:
Springer Nature B.V.
Konular:
Online Erişim:Citation/Abstract
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3151785885
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-024-11080-y  |2 doi 
035 |a 3151785885 
045 2 |b d20250301  |b d20250331 
084 |a 68693  |2 nlm 
245 1 |a Advancing paleontology: a survey on deep learning methodologies in fossil image analysis 
260 |b Springer Nature B.V.  |c Mar 2025 
513 |a Journal Article 
520 3 |a Understanding ancient organisms and their interactions with paleoenvironments through the study of body fossils is a central tenet of paleontology. Advances in digital image capture now allow for efficient and accurate documentation, curation, and interrogation of fossil forms and structures in two and three dimensions, extending from microfossils to larger specimens. Despite these developments, key fossil image processing and analysis tasks, such as segmentation and classification, still require significant user intervention, which can be labor-intensive and subject to human bias. Recent advances in deep learning offer the potential to automate fossil image analysis, improving throughput and limiting operator bias. Despite the emergence of deep learning within paleontology in the last decade, challenges such as the scarcity of diverse, high quality image datasets and the complexity of fossil morphology necessitate further advancement which will be aided by the adoption of concepts from other scientific domains. Here, we comprehensively review state-of-the-art deep learning based methodologies applied to fossil analysis, grouping the studies based on the fossil type and nature of the task. Furthermore, we analyze existing literature to tabulate dataset information, neural network architecture type, and key results, and provide textual summaries. Finally, we discuss novel techniques for fossil data augmentation and fossil image enhancements, which can be combined with advanced neural network architectures, such as diffusion models, generative hybrid networks, transformers, and graph neural networks, to improve body fossil image analysis. 
653 |a Human bias 
653 |a Digital imaging 
653 |a Datasets 
653 |a Data augmentation 
653 |a Image analysis 
653 |a Microorganisms 
653 |a Fossils 
653 |a Deep learning 
653 |a Historical structures 
653 |a Image segmentation 
653 |a Interrogation 
653 |a Graph neural networks 
653 |a Paleontology 
653 |a Neural networks 
653 |a Task complexity 
653 |a State-of-the-art reviews 
653 |a Image quality 
653 |a Machine learning 
653 |a Image processing 
653 |a Image processing systems 
653 |a Analysis 
653 |a Diffusion models 
653 |a Classification 
653 |a Information dissemination 
653 |a Morphology 
653 |a Learning 
653 |a Bias 
653 |a Fossilization 
653 |a Documentation 
653 |a Novels 
653 |a Segmentation 
653 |a Scarcity 
653 |a Networks 
653 |a Morphological complexity 
653 |a Intensive treatment 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 3 (Mar 2025), p. 83 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3151785885/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3151785885/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch