Reconstruction of bottom water ventilation changes in the West Philippine Sea during the last glacial-interglacial period

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Progress in Earth and Planetary Science vol. 12, no. 1 (Dec 2025), p. 4
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3151983237
003 UK-CbPIL
022 |a 2197-4284 
024 7 |a 10.1186/s40645-024-00675-2  |2 doi 
035 |a 3151983237 
045 2 |b d20251201  |b d20251231 
084 |a 243628  |2 nlm 
245 1 |a Reconstruction of bottom water ventilation changes in the West Philippine Sea during the last glacial-interglacial period 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Global deep-water circulation plays a crucial role in regulating long-term carbon storage in both the ocean and atmosphere. During the last glacial period, it is reported that this circulation slowed down, causing glacial intermediate water to descend to depths of 2,000 m in the Pacific. This process is thought to be a key mechanism in restricting global deep-water circulation and reducing atmospheric carbon dioxide concentrations during glacial periods. Conversely, the emergence of a potential deep-water formation zone in the northwestern Pacific during deglaciation adds complexity to these circulation patterns. Addressing the scarcity of sedimentary records in the subtropical western Pacific for paleoceanographic reconstruction, sediment core YK15-01 PC13 (23.5°N, 124.24°E; southeast of Ishigaki Island at a depth of 2,520 m) used in this study, collected in 2015. By analyzing coexisting planktonic and benthic foraminifera, we have reconstructed radiocarbon ventilation ages in this region since the last glacial maximum. Our findings, including ventilation age records compiled from the Atlantic and Pacific Oceans, reveal opposing deep-water circulation patterns from the last glacial to the interglacial period, including during the Heinrich Event 1 (HE1) and Younger Dryas (YD). This supports the theory of a seesaw-like oscillation in ocean circulation. Furthermore, the improved ventilation observed during HE1 and YD suggests a contribution from deep water formed in the high-latitude Pacific, influenced by cooler climate conditions. This glacial North Pacific deep water, likely confined to the northwestern Pacific, has left its mark in the subtropical western Pacific records. This research enhances our understanding of deep-water circulation interactions between the Atlantic and Pacific and contributes new insights into the role of northern Pacific deep water in influencing atmospheric carbon dioxide variations during the last deglaciation. 
653 |a Deep water 
653 |a Carbon 14 
653 |a Deglaciation 
653 |a Ventilation 
653 |a Younger Dryas 
653 |a Water circulation 
653 |a Last Glacial Maximum 
653 |a Heinrich events 
653 |a Water 
653 |a Deep water circulation 
653 |a Intermediate water 
653 |a Carbon dioxide 
653 |a Carbon sequestration 
653 |a Interglacial periods 
653 |a Bottom water 
653 |a Climatic conditions 
653 |a Oceans 
653 |a Circulation patterns 
653 |a Ocean circulation 
653 |a Deep water formation 
653 |a Carbon dioxide concentration 
653 |a Carbon 
653 |a Foraminifera 
653 |a Glacial periods 
653 |a Environmental 
773 0 |t Progress in Earth and Planetary Science  |g vol. 12, no. 1 (Dec 2025), p. 4 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3151983237/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3151983237/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch