LBNP: Learning features between neighboring points for point cloud classification

Сохранить в:
Библиографические подробности
Опубликовано в::PLoS One vol. 20, no. 1 (Jan 2025), p. e0314086
Главный автор: Wang, Lei
Другие авторы: Huang, Ming, Yang, Zhenqing, Wu, Rui, Qiu, Dashi, Xiao, Xingxing, Li, Dong, Chen, Cai
Опубликовано:
Public Library of Science
Предметы:
Online-ссылка:Citation/Abstract
Full Text
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3152099281
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0314086  |2 doi 
035 |a 3152099281 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Wang, Lei 
245 1 |a LBNP: Learning features between neighboring points for point cloud classification 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a Inspired by classical works, when constructing local relationships in point clouds, there is always a geometric description of the central point and its neighboring points. However, the basic geometric representation of the central point and its neighborhood is insufficient. Drawing inspiration from local binary pattern algorithms used in image processing, we propose a novel method for representing point cloud neighborhoods, which we call Point Cloud Local Auxiliary Block (PLAB). This module explores useful neighborhood features by learning the relationships between neighboring points, thereby enhancing the learning capability of the model. In addition, we propose a pure Transformer structure that takes into account both local and global features, called Dual Attention Layer (DAL), which enables the network to learn valuable global features as well as local features in the aggregated feature space. Experimental results show that our method performs well on both coarse- and fine-grained point cloud datasets. We will publish the code and all experimental training logs on GitHub. 
653 |a Algorithms 
653 |a Image processing 
653 |a Learning 
653 |a Cloud classification 
653 |a Methods 
653 |a Deep learning 
653 |a Computer vision 
653 |a Neighborhoods 
653 |a Neural networks 
653 |a Classification 
653 |a Environmental 
700 1 |a Huang, Ming 
700 1 |a Yang, Zhenqing 
700 1 |a Wu, Rui 
700 1 |a Qiu, Dashi 
700 1 |a Xiao, Xingxing 
700 1 |a Li, Dong 
700 1 |a Chen, Cai 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0314086 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3152099281/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3152099281/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3152099281/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch