Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Natural Hazards and Earth System Sciences vol. 25, no. 1 (2025), p. 183
Egile nagusia: Sinčić, Marko
Beste egile batzuk: Sanja Bernat Gazibara, Rossi, Mauro, Arbanas, Snježana Mihalić
Argitaratua:
Copernicus GmbH
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3152115378
003 UK-CbPIL
022 |a 1561-8633 
022 |a 1684-9981 
024 7 |a 10.5194/nhess-25-183-2025  |2 doi 
035 |a 3152115378 
045 2 |b d20250101  |b d20251231 
084 |a 123633  |2 nlm 
100 1 |a Sinčić, Marko  |u Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia 
245 1 |a Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a The large-scale landslide susceptibility assessment (LSA) is an important tool for reducing landslide risk through the application of resulting maps in spatial and urban planning. The existing literature more often deals with LSA modelling techniques, and the scientific research very rarely focuses on acquiring relevant thematic and landslide data, necessary to achieve reliable results. Therefore, the paper focuses on the crucial step of classifying continuous landslide conditioning factors for susceptibility modelling by presenting an innovative comprehensive analysis that resulted in 54 landslide susceptibility models to test 11 classification criteria (scenarios which vary from stretched values, partially stretched classes, heuristic approach, classification based on studentized contrast and landslide presence, and commonly used classification criteria, such as natural neighbour, quantiles and geometrical intervals) in combination with 5 statistical methods. The large-scale landslide susceptibility models were derived for small and shallow landslides in the pilot area (21 km2) located in the City of Zagreb (Croatia), which occur mainly in soils and soft rocks. Some of the novelties in LSA are the following: scenarios using stretched landslide conditioning factor values or classification with more than 10 classes prove more reliable; certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others; all the tested machine learning methods give the best landslide susceptibility model performance using continuous stretched landslide conditioning factors derived from high-resolution input data. The research highlights the importance of qualitative assessments, alongside commonly used quantitative metrics, to verify spatial accuracy and to test the applicability of derived landslide susceptibility maps for spatial planning purposes. 
651 4 |a Croatia 
653 |a Landslides 
653 |a Spatial planning 
653 |a Data acquisition 
653 |a Urban planning 
653 |a Modelling 
653 |a Classification 
653 |a Susceptibility 
653 |a Hazard assessment 
653 |a Environmental risk 
653 |a Machine learning 
653 |a Statistical methods 
653 |a Heuristic 
653 |a Soil classification 
653 |a Statistical models 
653 |a Heuristic methods 
653 |a Case studies 
653 |a Qualitative analysis 
653 |a Scientific research 
653 |a Precipitation 
653 |a Remote sensing 
653 |a Spatial data 
653 |a Geomorphology 
653 |a Decades 
653 |a Support vector machines 
653 |a Criteria 
653 |a Maps 
653 |a Mapping 
653 |a Environmental 
700 1 |a Sanja Bernat Gazibara  |u Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia 
700 1 |a Rossi, Mauro  |u Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, 06128 Perugia, Italy 
700 1 |a Arbanas, Snježana Mihalić  |u Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia 
773 0 |t Natural Hazards and Earth System Sciences  |g vol. 25, no. 1 (2025), p. 183 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3152115378/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3152115378/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3152115378/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch