WormID-Benchmark: Extracting Whole-Brain Neural Dynamics of C. elegans At the Neuron Resolution

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:bioRxiv (Jan 7, 2025)
मुख्य लेखक: Adhinarta, Jason
अन्य लेखक: Dong, Jizheng, He, Tianxiao, Sprague, Daniel, Wan, Jia, Hyun Jee Lee, Yu, Zikai, Lu, Hang, Yemini, Eviatar, Kato, Saul, Varol, Erdem, Donglai Wei
प्रकाशित:
Cold Spring Harbor Laboratory Press
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3152304836
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.06.631621  |2 doi 
035 |a 3152304836 
045 0 |b d20250107 
100 1 |a Adhinarta, Jason 
245 1 |a WormID-Benchmark: Extracting Whole-Brain Neural Dynamics of C. elegans At the Neuron Resolution 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 7, 2025 
513 |a Working Paper 
520 3 |a The nematode C. elegans is a well-studied model organism for characterizing the structure, connectivity, and function of a complete nervous system. Recent technical breakthroughs in 3D light microscopy and fluorescent protein tagging of individual neurons have brought us closer to capturing the neural dynamics of the worm at whole-brain resolution. Nevertheless, capturing a complete map of neural dynamics using these high-resolution recordings requires solving three specific challenges: i) detection of individual neurons in fluorescence videos, ii) identification of these neurons according to their anatomically defined classes, and iii) tracking of neural positions over time. Successfully addressing these challenges with high sensitivity, specificity, and throughput can enable us to analyze a large population sample, providing unprecedented insights into the structure and function of an entire brain at single-neuron resolution, a feat previously unaccomplished in any organism. To facilitate this scientific goal, we have curated publicly available annotated datasets from 118 worms across five distinct laboratories and established systematic benchmarks, decomposing the overarching objective into three well-defined tasks: i) neural detection, ii) identification, and iii) spatiotemporal tracking. Our preliminary analysis has revealed considerable room for improvement in existing state-of-the-art computational methods. Consequently, we envision that our WormID-Benchmark can catalyze efforts by a broad audience specializing in computer vision to develop robust and accurate methods that significantly enhance the throughput of generating annotated whole-brain neural dynamics datasets. We make our benchmark results reproducible; our code is publicly available at https://github.com/focolab/WormND.Competing Interest StatementThe authors have declared no competing interest.Footnotes* We remove the figures at the end.* https://github.com/focolab/WormND 
653 |a Neurons 
653 |a Light microscopy 
653 |a Structure-function relationships 
653 |a Nervous system 
653 |a Functional anatomy 
653 |a Neural networks 
653 |a Marking and tracking techniques 
653 |a Brain mapping 
700 1 |a Dong, Jizheng 
700 1 |a He, Tianxiao 
700 1 |a Sprague, Daniel 
700 1 |a Wan, Jia 
700 1 |a Hyun Jee Lee 
700 1 |a Yu, Zikai 
700 1 |a Lu, Hang 
700 1 |a Yemini, Eviatar 
700 1 |a Kato, Saul 
700 1 |a Varol, Erdem 
700 1 |a Donglai Wei 
773 0 |t bioRxiv  |g (Jan 7, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3152304836/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3152304836/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.06.631621v2