Locally induced traveling waves generate globally observable traveling waves

Shranjeno v:
Bibliografske podrobnosti
izdano v:bioRxiv (Jan 7, 2025)
Glavni avtor: Petras, Kirsten
Drugi avtorji: Grabot, Laetitia, Dugué, Laura
Izdano:
Cold Spring Harbor Laboratory Press
Teme:
Online dostop:Citation/Abstract
Full text outside of ProQuest
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3152304875
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.07.630662  |2 doi 
035 |a 3152304875 
045 0 |b d20250107 
100 1 |a Petras, Kirsten 
245 1 |a Locally induced traveling waves generate globally observable traveling waves 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 7, 2025 
513 |a Working Paper 
520 3 |a Cortical traveling waves have been proposed as a fundamental mechanism for neural communication and computation. Methodological uncertainties currently limit the interpretability of non-invasive, extracranial traveling wave data, sparking debates about their cortical origin. Studies using EEG or MEG typically report waves that cover large portions of the sensor array which are often interpreted as reflecting long range cortical waves. Meanwhile, invasive, intracranial recordings in humans and animals routinely find both local, mesoscopic waves and large scale, macroscopic waves in cortex. Whether the global sensor-array waves found with EEG/MEG necessarily correspond to macroscopic cortical waves or whether they are merely projections of local dynamics remains unclear. In this study, we made use of the well-established retinotopic organization of early visual cortex to generate traveling waves with known properties in human participants (N=19, m/f) via targeted visual stimulation, while simultaneously recording MEG and EEG. The inducer stimuli were designed to elicit waves whose traveling direction in mesoscopic retinotopic visual areas depends on stimulus direction, while leaving macroscopic activation patterns along the visual hierarchy largely unchanged. We observed that the preferred direction of traveling waves across the sensor array was influenced by that of the visual stimulus, but only at the stimulation frequency. Comparison between single-trial and trial-averaged responses further showed considerable temporal variation in traveling wave patterns across trials. Our results highlight that under tight experimental control, non-invasive, extracranial recordings can recover mesoscopic traveling wave activity, thus making them viable tools for the investigation of spatially constrained wave dynamics.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Retina 
653 |a Visual pathways 
653 |a Visual cortex 
653 |a Temporal variations 
653 |a Information processing 
653 |a Visual stimuli 
653 |a EEG 
653 |a Temporal lobe 
653 |a Sensors 
700 1 |a Grabot, Laetitia 
700 1 |a Dugué, Laura 
773 0 |t bioRxiv  |g (Jan 7, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3152304875/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.07.630662v1