A practical formalization of monadic equational reasoning in dependent-type theory

Збережено в:
Бібліографічні деталі
Опубліковано в::Journal of Functional Programming vol. 35 (Jan 2025)
Автор: Affeldt, Reynald
Інші автори: Garrigue, Jacques, Saikawa, Takafumi
Опубліковано:
Cambridge University Press
Предмети:
Онлайн доступ:Citation/Abstract
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3152436729
003 UK-CbPIL
022 |a 0956-7968 
022 |a 1469-7653 
024 7 |a 10.1017/S0956796824000157  |2 doi 
035 |a 3152436729 
045 2 |b d20250101  |b d20250131 
084 |a 79046  |2 nlm 
100 1 |a Affeldt, Reynald  |u Digital Architecture Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan (e-mail: reynald.affeldt@aist.go.jp ) 
245 1 |a A practical formalization of monadic equational reasoning in dependent-type theory 
260 |b Cambridge University Press  |c Jan 2025 
513 |a Journal Article 
520 3 |a One can perform equational reasoning about computational effects with a purely functional programming language thanks to monads. Even though equational reasoning for effectful programs is desirable, it is not yet mainstream. This is partly because it is difficult to maintain pencil-and-paper proofs of large examples. We propose a formalization of a hierarchy of effects using monads in the Coq proof assistant that makes monadic equational reasoning practical. Our main idea is to formalize the hierarchy of effects and algebraic laws as interfaces like it is done when formalizing hierarchy of algebras in dependent-type theory. Thanks to this approach, we clearly separate equational laws from models. We can then take advantage of the sophisticated rewriting capabilities of Coq and build libraries of lemmas to achieve concise proofs of programs. We can also use the resulting framework to leverage on Coq’s mathematical theories and formalize models of monads. In this article, we explain how we formalize a rich hierarchy of effects (nondeterminism, state, probability, etc.), how we mechanize examples of monadic equational reasoning from the literature, and how we apply our framework to the design of equational laws for a subset of ML with references. 
653 |a Set theory 
653 |a Functional programming 
653 |a Programming languages 
653 |a Interfaces 
653 |a Reasoning 
653 |a Algebra 
653 |a Factories 
700 1 |a Garrigue, Jacques  |u Graduate School of Mathematics, Nagoya University, Nagoya, Japan (e-mail: garrigue@math.nagoya-u.ac.jp ) 
700 1 |a Saikawa, Takafumi  |u Graduate School of Mathematics, Nagoya University, Nagoya, Japan (e-mail: tscompor@gmail.com ) 
773 0 |t Journal of Functional Programming  |g vol. 35 (Jan 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3152436729/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3152436729/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch