A study on the optimal allocation of photovoltaic storage capacity for rural new energy microgrids based on double-layer multi-objective collaborative decision-making

Uloženo v:
Podrobná bibliografie
Vydáno v:Sustainable Energy Research vol. 12, no. 1 (Dec 2025), p. 1
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3152818974
003 UK-CbPIL
022 |a 2198-994X 
024 7 |a 10.1186/s40807-024-00140-0  |2 doi 
035 |a 3152818974 
045 2 |b d20251201  |b d20251231 
245 1 |a A study on the optimal allocation of photovoltaic storage capacity for rural new energy microgrids based on double-layer multi-objective collaborative decision-making 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Aiming at the problems of low energy efficiency and unstable operation in the optimal allocation of optical storage capacity in rural new energy microgrids, this paper proposes an optimization method based on two-layer multi-objective collaborative decision-making. First, an outer optimization objective function containing constraints on capacity allocation, line transmission security, charging and discharging power of the energy storage system, microgrid security, and power supply reliability was constructed, and an inner optimization objective function containing constraints on energy storage self-discharge correction and power balance was constructed. The quantum-behaved particle swarm optimization algorithm is used to solve the optimal solution set of the objective function, and the interactive multi-criteria decision-making method is used to select the compromise solution to realize efficient optimal allocation of optical storage capacity. The test results show that this method can obtain the Pareto optimal solution set of multi-objective functions in the model. Comprehensive prospect value calculation results are obtained according to each configuration scheme, and a compromise scheme is obtained. The total energy consumption, power deviation rate, light rejection rate, and load loss cost were significantly reduced, with maximum values of 90.5%, 2.03% and 114,700 yuan, respectively, and the load loss probability was lower than 2.2%. The results show that the proposed method can effectively improve the total energy consumption utilization of the microgrid, reduce the power deviation rate and light abandonment rate, and provide significant advantages in different lighting and load demand scenarios. 
653 |a Discharge 
653 |a Storage conditions 
653 |a Particle swarm optimization 
653 |a Electrical loads 
653 |a Collaboration 
653 |a Distributed generation 
653 |a Security 
653 |a Multiple criterion 
653 |a Energy storage 
653 |a Energy efficiency 
653 |a Optimization 
653 |a Load distribution 
653 |a Storage capacity 
653 |a Multiple objective analysis 
653 |a Decision making 
653 |a Pareto optimum 
653 |a Energy consumption 
653 |a Loss probability 
653 |a Photovoltaics 
653 |a Objective function 
653 |a Energy 
653 |a Deviation 
653 |a Algorithms 
653 |a Constraints 
653 |a Rejection rate 
653 |a Economic 
773 0 |t Sustainable Energy Research  |g vol. 12, no. 1 (Dec 2025), p. 1 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3152818974/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3152818974/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch