Semantic Segmentation Method for High-Resolution Tomato Seedling Point Clouds Based on Sparse Convolution

Uloženo v:
Podrobná bibliografie
Vydáno v:Agriculture vol. 15, no. 1 (2025), p. 74
Hlavní autor: Li, Shizhao
Další autoři: Yan, Zhichao, Ma, Boxiang, Guo, Shaoru, Song, Hongxia
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3153495173
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15010074  |2 doi 
035 |a 3153495173 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Li, Shizhao  |u School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; <email>202101204122@email.sxu.edu.cn</email> (S.L.); <email>202312407023@email.sxu.edu.cn</email> (Z.Y.); <email>202412407017@email.sxu.edu.cn</email> (B.M.) 
245 1 |a Semantic Segmentation Method for High-Resolution Tomato Seedling Point Clouds Based on Sparse Convolution 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Semantic segmentation of three-dimensional (3D) plant point clouds at the stem-leaf level is foundational and indispensable for high-throughput tomato phenotyping systems. However, existing semantic segmentation methods often suffer from issues such as low precision and slow inference speed. To address these challenges, we propose an innovative encoding-decoding structure, incorporating voxel sparse convolution (SpConv) and attention-based feature fusion (VSCAFF) to enhance semantic segmentation of the point clouds of high-resolution tomato seedling images. Tomato seedling point clouds from the Pheno4D dataset labeled into semantic classes of ‘leaf’, ‘stem’, and ‘soil’ are applied for the semantic segmentation. In order to reduce the number of parameters so as to further improve the inference speed, the SpConv module is designed to function through the residual concatenation of the skeleton convolution kernel and the regular convolution kernel. The feature fusion module based on the attention mechanism is designed by giving the corresponding attention weights to the voxel diffusion features and the point features in order to avoid the ambiguity of points with different semantics having the same characteristics caused by the diffusion module, in addition to suppressing noise. Finally, to solve model training class bias caused by the uneven distribution of point cloud classes, the composite loss function of Lovász-Softmax and weighted cross-entropy is introduced to supervise the model training and improve its performance. The results show that mIoU of VSCAFF is 86.96%, which outperformed the performance of PointNet, PointNet++, and DGCNN, respectively. IoU of VSCAFF achieves 99.63% in the soil class, 64.47% in the stem class, and 96.72% in the leaf class. The time delay of 35ms in inference speed is better than PointNet++ and DGCNN. The results demonstrate that VSCAFF has high performance and inference speed for semantic segmentation of high-resolution tomato point clouds, and can provide technical support for the high-throughput automatic phenotypic analysis of tomato plants. 
610 4 |a Hexagon Metrology 
653 |a Datasets 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Image resolution 
653 |a Noise reduction 
653 |a Scanners 
653 |a Tomatoes 
653 |a Convolution 
653 |a Leaves 
653 |a Image processing 
653 |a Semantic segmentation 
653 |a Modules 
653 |a Training 
653 |a Soil improvement 
653 |a Semantics 
653 |a Seedlings 
653 |a Image segmentation 
653 |a Phenotyping 
653 |a Lasers 
653 |a Neural networks 
653 |a Stems 
653 |a High resolution 
653 |a Three dimensional models 
653 |a Inference 
653 |a Diffusion rate 
653 |a Encoding-Decoding 
653 |a Environmental 
700 1 |a Yan, Zhichao  |u School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; <email>202101204122@email.sxu.edu.cn</email> (S.L.); <email>202312407023@email.sxu.edu.cn</email> (Z.Y.); <email>202412407017@email.sxu.edu.cn</email> (B.M.) 
700 1 |a Ma, Boxiang  |u School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; <email>202101204122@email.sxu.edu.cn</email> (S.L.); <email>202312407023@email.sxu.edu.cn</email> (Z.Y.); <email>202412407017@email.sxu.edu.cn</email> (B.M.) 
700 1 |a Guo, Shaoru  |u School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China; <email>202101204122@email.sxu.edu.cn</email> (S.L.); <email>202312407023@email.sxu.edu.cn</email> (Z.Y.); <email>202412407017@email.sxu.edu.cn</email> (B.M.) 
700 1 |a Song, Hongxia  |u College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; <email>13834836584@sxau.edu.cn</email> 
773 0 |t Agriculture  |g vol. 15, no. 1 (2025), p. 74 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153495173/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153495173/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153495173/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch