Reproducibility and repeatability of 18F-(2S, 4R)-4-fluoroglutamine PET imaging in preclinical oncology models

Guardado en:
Bibliografiske detaljer
Udgivet i:PLoS One vol. 20, no. 1 (Jan 2025), p. e0313123
Hovedforfatter: Ayers, Gregory D
Andre forfattere: Cohen, Allison S, Seong-Woo Bae, Wen, Xiaoxia, Pollard, Alyssa, Sharma, Shilpa, Claus, Trey, Payne, Adria, Ling Geng †, † Deceased. Ping Zhao, Mohammed Noor Tantawy, Gammon, Seth T, Manning, H Charles
Udgivet:
Public Library of Science
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3153511160
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0313123  |2 doi 
035 |a 3153511160 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Ayers, Gregory D 
245 1 |a Reproducibility and repeatability of <sup>18</sup>F-(<i>2S</i>, <i>4R</i>)-4-fluoroglutamine PET imaging in preclinical oncology models 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a IntroductionMeasurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task. 18F-(2S, 4R)-4-fluoro-glutamine (18F-Gln) is a PET tracer designed for imaging glutamine uptake and metabolism. This study illustrates high reproducibility and repeatability with 18F-Gln for in vivo research.MethodsTwenty mice bearing colorectal cancer cell line xenografts were injected with ~9 MBq of 18F-Gln and imaged in an Inveon microPET. Three individuals analyzed the tumor uptake of 18F-Gln using the same set of images, the same image analysis software, and the same analysis method. Scans were randomly re-ordered for a second repeatability measurement 6 months later. Statistical analyses were performed using the methods of Bland and Altman (B&A), Gauge Reproducibility and Repeatability (Gauge R&R), and Lin’s Concordance Correlation Coefficient. A comprehensive equivalency test, designed to reject a null hypothesis of non-equivalence, was also conducted.ResultsIn a two-way random effects Gauge R&R model, variance among mice and their measurement variance were 0.5717 and 0.024. Reproducibility and repeatability accounted for 31% and 69% of the total measurement error, respectively. B&A repeatability coefficients for analysts 1, 2, and 3 were 0.16, 0.35, and 0.49. One-half B&A agreement limits between analysts 1 and 2, 1 and 3, and 2 and 3 were 0.27, 0.47, and 0.47, respectively. The mean square deviation and total deviation index were lowest for analysts 1 and 2, while coverage probabilities and coefficients of the individual agreement were highest. Finally, the definitive agreement inference hypothesis test for equivalency demonstrated that all three confidence intervals for the average difference of means from repeated measures lie within our a priori limits of equivalence (i.e. ± 0.5%ID/g).ConclusionsOur data indicate high individual analyst and laboratory-level reproducibility and repeatability. The assessment of R&R using the appropriate methods is critical and should be adopted by the broader imaging community. 
610 4 |a Vanderbilt University Envigo 
653 |a Agreements 
653 |a Statistics 
653 |a Software 
653 |a Reproducibility 
653 |a Scanners 
653 |a Equivalence 
653 |a Variance 
653 |a Gauges 
653 |a Medical imaging 
653 |a Oncology 
653 |a Xenotransplantation 
653 |a Image processing 
653 |a Statistical analysis 
653 |a Statistical methods 
653 |a In vivo methods and tests 
653 |a Correlation coefficient 
653 |a Positron emission tomography 
653 |a Correlation coefficients 
653 |a Laboratory animals 
653 |a Null hypothesis 
653 |a Image analysis 
653 |a Confidence intervals 
653 |a Positron emission 
653 |a Fluorine isotopes 
653 |a Deviation 
653 |a Colorectal carcinoma 
653 |a Glutamine 
653 |a Algorithms 
653 |a Tracers 
653 |a Tumors 
653 |a Colorectal cancer 
653 |a Environmental 
700 1 |a Cohen, Allison S 
700 1 |a Seong-Woo Bae 
700 1 |a Wen, Xiaoxia 
700 1 |a Pollard, Alyssa 
700 1 |a Sharma, Shilpa 
700 1 |a Claus, Trey 
700 1 |a Payne, Adria 
700 1 |a Ling Geng † 
700 1 |a † Deceased. Ping Zhao 
700 1 |a Mohammed Noor Tantawy 
700 1 |a Gammon, Seth T 
700 1 |a Manning, H Charles 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0313123 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153511160/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3153511160/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153511160/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch