Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis

Guardat en:
Dades bibliogràfiques
Publicat a:Cells vol. 14, no. 1 (2025), p. 27
Autor principal: Ilyas, Sidra
Altres autors: Manan, Abdul, Park, Chanyoon, Hee-Geun Jo, Lee, Donghun
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3153526258
003 UK-CbPIL
022 |a 2073-4409 
024 7 |a 10.3390/cells14010027  |2 doi 
035 |a 3153526258 
045 2 |b d20250101  |b d20251231 
084 |a 231441  |2 nlm 
100 1 |a Ilyas, Sidra  |u Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; <email>sidrailyas6@gachon.ac.kr</email> (S.I.); 
245 1 |a Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure–activity relationship (QSAR) modeling, structure–activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson–Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors. The ChEMBL database was used to retrieve compounds with known IC50 values to train machine learning (ML) models using the Lazy Predict package. After data pre-processing, 401 non-redundant structures were selected for exploratory data analysis (EDA). PubChem and MACCS fingerprints were used to predict the inhibitory activities of the compounds. SALI was used to identify structurally similar compounds with significantly different biological activities. The compounds were docked using MOE to assess their binding affinities and interactions with key residues in NLRP3. The models were evaluated, and a comparative analysis revealed that the ensemble Random Forest (RF) model (PubChem fingerprints) with RMSE (0.731), R2 (0.622), and MAPE (8.988) and bootstrap aggregating model (MACCS fingerprints) with RMSE (0.687), R2 (0.666), and MAPE (9.216) on the testing set performed well, in accordance with the Organization for Economic Cooperation and Development (OECD) guidelines. Out of all docked compounds, the two most promising compounds (ChEMBL5289544 and ChEMBL5219789) with binding scores of −7.5 and −8.2 kcal/mol were further investigated by MD to evaluate their stability and dynamic behavior within the binding site. MD simulations (200 ns) revealed strong structural stability, flexibility, and interactions in the selected complexes. MM/PBSA binding free energy calculations revealed that van der Waals and electrostatic forces were the key drivers of the binding of the protein with ligands. The outcomes obtained can be used to design more potent and selective NLRP3 inhibitors as therapeutic agents for the treatment of inflammatory diseases such as RA. However, concerns related to the lack of large datasets, experimental validation, and high computational costs remain. 
610 4 |a Organization for Economic Cooperation & Development 
653 |a Data processing 
653 |a Machine learning 
653 |a Rheumatoid arthritis 
653 |a Comparative analysis 
653 |a Datasets 
653 |a Structure-activity relationships 
653 |a Inflammasomes 
653 |a Cytokines 
653 |a Free energy 
653 |a Feature selection 
653 |a Data analysis 
653 |a Inflammation 
653 |a Protein structure 
653 |a Algorithms 
653 |a Electrostatic properties 
653 |a Decision trees 
653 |a Drug development 
653 |a Biological activity 
653 |a Learning algorithms 
653 |a Statistical analysis 
653 |a Inflammatory diseases 
653 |a Pathogenesis 
700 1 |a Manan, Abdul  |u Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; <email>mananriaz012@gmail.com</email> 
700 1 |a Park, Chanyoon  |u Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; <email>sidrailyas6@gachon.ac.kr</email> (S.I.); 
700 1 |a Hee-Geun Jo  |u Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; <email>sidrailyas6@gachon.ac.kr</email> (S.I.); ; Naturalis Inc. 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea 
700 1 |a Lee, Donghun  |u Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; <email>sidrailyas6@gachon.ac.kr</email> (S.I.); 
773 0 |t Cells  |g vol. 14, no. 1 (2025), p. 27 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153526258/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153526258/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153526258/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch