Design Optimization of an Innovative Instrumental Single-Sided Formwork Supporting System for Retaining Walls Using Physics-Constrained Generative Adversarial Network

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Buildings vol. 16, no. 1 (2025), p. 132
Үндсэн зохиолч: Liu, Wei
Бусад зохиолчид: He, Lin, Liu, Jikai, Xie, Xiangyang, Hao, Ning, Shen, Cheng, Zhou, Junyong
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3153544335
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15010132  |2 doi 
035 |a 3153544335 
045 2 |b d20250101  |b d20250114 
084 |a 231437  |2 nlm 
100 1 |a Liu, Wei  |u China Construction Engineering (Macau) Co., Ltd., Macau 999078, China; <email>liuweihd@cohl.com</email> (W.L.); <email>xiexy@cohl.com</email> (X.X.); <email>haoning@cohl.com</email> (N.H.); <email>shencheng@cohl.com</email> (C.S.) 
245 1 |a Design Optimization of an Innovative Instrumental Single-Sided Formwork Supporting System for Retaining Walls Using Physics-Constrained Generative Adversarial Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Single-sided formwork supporting systems (SFSSs) play a crucial role in the urban construction of retaining walls using cast-in-place concrete. By supporting the formwork from one side, an SFSS can minimize its spatial footprint, enabling its closer placement to boundary lines without compromising structural integrity. However, existing SFSS designs struggle to achieve a balance between mechanical performance and lightweight construction. To address these limitations, an innovative instrumented SFSS was proposed. It is composed of a panel structure made of a panel, vertical braces, and cross braces and a supporting structure comprising an L-shaped frame, steel tubes, and anchor bolts. These components are conducive to modular manufacturing, lightweight installation, and convenient connections. To facilitate the optimal design of this instrumented SFSS, a physics-constrained generative adversarial network (PC-GAN) approach was proposed. This approach incorporates three objective functions: minimizing material usage, adhering to deformation criteria, and ensuring structural safety. An example application is presented to demonstrate the superiority of the instrumented SFSS and validate the proposed PC-GAN approach. The instrumented SFSS enables individual components to be easily and rapidly prefabricated, assembled, and disassembled, requiring only two workers for installation or removal without the need for additional hoisting equipment. The optimized instrumented SFSS, designed using the PC-GAN approach, achieves comparable deformation performance (from 2.49 mm to 2.48 mm in maxima) and slightly improved component stress levels (from 97 MPa to 115 MPa in maxima) while reducing the total weight by 20.85%, through optimizing panel thickness, the dimensions and spacings of vertical and lateral braces, and the spacings of steel tubes. This optimized design of the instrumented SFSS using PC-GAN shows better performance than the current scheme, combining significant weight reduction with enhanced mechanical efficiency. 
653 |a Load 
653 |a Cast in place 
653 |a Mechanical efficiency 
653 |a Structural engineering 
653 |a Structural safety 
653 |a Urban planning 
653 |a Physics 
653 |a Installation 
653 |a Deformation 
653 |a Modular equipment 
653 |a Mechanical properties 
653 |a Generative adversarial networks 
653 |a Retaining walls 
653 |a Design 
653 |a Concrete construction 
653 |a Steel tubes 
653 |a Lightweight 
653 |a Anchor bolts 
653 |a Efficiency 
653 |a Basements & cellars 
653 |a Design optimization 
653 |a Prefabricated buildings 
653 |a Formwork 
653 |a Structural integrity 
653 |a Steel pipes 
653 |a High rise buildings 
653 |a Engineering 
653 |a Weight reduction 
653 |a Urban areas 
653 |a Modular structures 
653 |a Constraints 
653 |a Underground construction 
700 1 |a He, Lin  |u School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China; <email>2112316153@e.gzhu.edu.cn</email> 
700 1 |a Liu, Jikai  |u China Construction Investment (Zhuhai) Co., Ltd., Zhuhai 519000, China; <email>liujk@cohl.com</email> 
700 1 |a Xie, Xiangyang  |u China Construction Engineering (Macau) Co., Ltd., Macau 999078, China; <email>liuweihd@cohl.com</email> (W.L.); <email>xiexy@cohl.com</email> (X.X.); <email>haoning@cohl.com</email> (N.H.); <email>shencheng@cohl.com</email> (C.S.) 
700 1 |a Hao, Ning  |u China Construction Engineering (Macau) Co., Ltd., Macau 999078, China; <email>liuweihd@cohl.com</email> (W.L.); <email>xiexy@cohl.com</email> (X.X.); <email>haoning@cohl.com</email> (N.H.); <email>shencheng@cohl.com</email> (C.S.) 
700 1 |a Shen, Cheng  |u China Construction Engineering (Macau) Co., Ltd., Macau 999078, China; <email>liuweihd@cohl.com</email> (W.L.); <email>xiexy@cohl.com</email> (X.X.); <email>haoning@cohl.com</email> (N.H.); <email>shencheng@cohl.com</email> (C.S.) 
700 1 |a Zhou, Junyong  |u School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China; <email>2112316153@e.gzhu.edu.cn</email> 
773 0 |t Buildings  |g vol. 16, no. 1 (2025), p. 132 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153544335/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153544335/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153544335/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch