Reversible Spectral Speech Watermarking with Variable Embedding Locations Against Spectrum-Based Attacks

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Applied Sciences vol. 15, no. 1 (2025), p. 381
Egile nagusia: Huang, Xuping
Beste egile batzuk: Ito, Akinori
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3153579679
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15010381  |2 doi 
035 |a 3153579679 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Huang, Xuping  |u Department of Communications Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan; <email>huang@cis.shimane-u.ac.jp</email>; Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue 690-8504, Japan 
245 1 |a Reversible Spectral Speech Watermarking with Variable Embedding Locations Against Spectrum-Based Attacks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To guarantee the reliability and integrity of audio, data have been focused on as an essential topic as the fast development of generative AI. Significant progress in machine learning and speech synthesis has increased the potential for audio tampering. In this paper, we focus on the digital watermarking method as a promising method to safeguard the authenticity of audio evidence. Due to the integrity of the original data with probative importance, the algorithm requires reversibility, imperceptibility, and reliability. To meet the requirements, we propose a reversible digital watermarking approach that embeds feature data concentrating in high-frequency intDCT coefficients after transforming data from the time domain into the frequency domain. We explored the appropriate hiding locations against spectrum-based attacks with novel proposed methodologies for spectral expansion for embedding. However, the drawback of fixed expansion is that the stego signal is prone to being detected by a spectral analysis. Therefore, this paper proposes two other new expansion methodologies that embed the data into variable locations—random expansion and adaptive expansion with distortion estimation for embedding—which effectively conceal the watermark’s presence while maintaining high perceptual quality with an average segSNR better than 21.363 dB and average MOS value better than 4.085. Our experimental results demonstrate the efficacy of our proposed method in both sound quality preservation and log-likelihood value, indicating the absolute discontinuity of the spectrogram after embedding is proposed to evaluate the effectiveness of the proposed reversible spectral expansion watermarking algorithm. The result of EER indicated that the adaptive hiding performed best against attacks by spectral analysis. 
653 |a Forgery 
653 |a Methods 
653 |a Spread spectrum 
653 |a Localization 
653 |a Art techniques 
653 |a Speech 
653 |a Digital signatures 
653 |a Signal processing 
653 |a Machine learning 
700 1 |a Ito, Akinori  |u Department of Communications Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan; <email>huang@cis.shimane-u.ac.jp</email> 
773 0 |t Applied Sciences  |g vol. 15, no. 1 (2025), p. 381 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153579679/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153579679/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153579679/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch