MetaTrans-FSTSF: A Transformer-Based Meta-Learning Framework for Few-Shot Time Series Forecasting in Flood Prediction

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Remote Sensing vol. 17, no. 1 (2025), p. 77
Kaituhi matua: Jiang, Jiange
Ētahi atu kaituhi: Chen, Chen, Lackinger, Anna, Li, Huimin, Li, Wan, Qingqi Pei, Dustdar, Schahram
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3153685591
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17010077  |2 doi 
035 |a 3153685591 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Jiang, Jiange  |u School of Telecommunications Engineering, Xidian University, Xi’an 710071, China; <email>jiangejiang@stu.xidian.edu.cn</email> 
245 1 |a MetaTrans-FSTSF: A Transformer-Based Meta-Learning Framework for Few-Shot Time Series Forecasting in Flood Prediction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Time series forecasting, particularly within the Internet of Things (IoT) and hydrological domains, plays a critical role in predicting future events based on historical data, which is essential for strategic decision making. Effective flood forecasting is pivotal for optimal water resource management and for mitigating the adverse impacts of flood events. While deep learning methods have demonstrated exceptional performance in time series prediction through advanced feature extraction and pattern recognition, they encounter significant limitations when applied to scenarios with sparse data, especially in flood forecasting. The scarcity of historical data can severely hinder the generalization capabilities of traditional deep learning models, presenting a notable challenge in practical flood prediction applications. To address this issue, we introduce MetaTrans-FSTSF, a pioneering meta-learning framework that redefines few-shot time series forecasting. By innovatively integrating MAML and Transformer architectures, our framework provides a specialized solution tailored for the unique challenges of flood prediction, including data scarcity and complex temporal patterns. This framework goes beyond standard implementations, delivering significant improvements in predictive accuracy and adaptability. Our approach leverages Model-Agnostic Meta-Learning (MAML) to enable rapid adaptation to new forecasting tasks with minimal historical data. Our inner architecture is a Transformer-based meta-predictor capable of capturing intricate temporal dependencies inherent in flood time series data. Our framework was evaluated using diverse datasets, including a real-world hydrological dataset from a small catchment area in Wuyuan, China, and other benchmark time series datasets. These datasets were preprocessed to align with the meta-learning approach, ensuring their suitability for tasks with limited data availability. Through extensive evaluation, we demonstrate that MetaTrans-FSTSF substantially improves predictive accuracy, achieving a reduction of up to 16%, 19%, and 8% in MAE compared to state-of-the-art methods. This study highlights the efficacy of meta-learning techniques in overcoming the limitations posed by data scarcity and enhancing flood forecasting accuracy where historical data are limited. 
653 |a Flood forecasting 
653 |a Scarcity 
653 |a Accuracy 
653 |a Flood management 
653 |a Water resources management 
653 |a Deep learning 
653 |a Datasets 
653 |a Internet of Things 
653 |a Pattern recognition 
653 |a Task complexity 
653 |a Hydrology 
653 |a Weather forecasting 
653 |a Machine learning 
653 |a Time series 
653 |a Climate change 
653 |a Floods 
653 |a Adaptability 
653 |a Catchment areas 
653 |a Resource management 
653 |a Emergency preparedness 
653 |a Artificial intelligence 
653 |a Computer vision 
653 |a Predictions 
653 |a Neural networks 
653 |a Effectiveness 
653 |a Emergency communications systems 
653 |a Impact prediction 
653 |a Decision making 
653 |a Flood predictions 
700 1 |a Chen, Chen  |u School of Telecommunications Engineering, Xidian University, Xi’an 710071, China; <email>jiangejiang@stu.xidian.edu.cn</email> 
700 1 |a Lackinger, Anna  |u Informatics, Technische Universität Wien, 1040 Vienna, Austria; <email>a.lackinger@dsg.tuwien.ac.at</email> (A.L.); <email>dustdar@dsg.tuwien.ac.at</email> (S.D.) 
700 1 |a Li, Huimin  |u The Goldenwater Information Technology Development Co., Ltd., Beijing 100028, China; <email>lihuimin@goldenwater.com.cn</email> (H.L.); <email>liwan@goldenwater.com.cn</email> (W.L.) 
700 1 |a Li, Wan  |u The Goldenwater Information Technology Development Co., Ltd., Beijing 100028, China; <email>lihuimin@goldenwater.com.cn</email> (H.L.); <email>liwan@goldenwater.com.cn</email> (W.L.) 
700 1 |a Qingqi Pei  |u State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China; <email>qqpei@mail.xidian.edu.cn</email> 
700 1 |a Dustdar, Schahram  |u Informatics, Technische Universität Wien, 1040 Vienna, Austria; <email>a.lackinger@dsg.tuwien.ac.at</email> (A.L.); <email>dustdar@dsg.tuwien.ac.at</email> (S.D.) 
773 0 |t Remote Sensing  |g vol. 17, no. 1 (2025), p. 77 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3153685591/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3153685591/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3153685591/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch